ngel Ros

List of Publications by Citations

Source: https://exaly.com/author-pdf/8008290/angel-rios-publications-by-citations.pdf

Version: 2024-04-18

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

7,058 42 332 57 h-index g-index citations papers 7,655 6.13 336 5.7 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
332	Miniaturization through lab-on-a-chip: utopia or reality for routine laboratories? A review. <i>Analytica Chimica Acta</i> , 2012 , 740, 1-11	6.6	168
331	Supercritical fluid extraction of phenol compounds from olive leaves. <i>Talanta</i> , 1998 , 46, 1123-30	6.2	113
330	Recent advances in magnetic nanomaterials for improving analytical processes. <i>TrAC - Trends in Analytical Chemistry</i> , 2016 , 84, 72-83	14.6	97
329	Determination of anti-carcinogenic polyphenols present in green tea using capillary electrophoresis coupled to a flow injection system. <i>Journal of Chromatography A</i> , 1998 , 827, 113-20	4.5	97
328	Challenges of analytical microsystems. <i>TrAC - Trends in Analytical Chemistry</i> , 2006 , 25, 467-479	14.6	93
327	Magnetic (nano)materials as an useful tool for sample preparation in analytical methods. A review. <i>Analytical Methods</i> , 2013 , 5, 4558	3.2	90
326	Enhancing sensitivity in capillary electrophoresis. <i>TrAC - Trends in Analytical Chemistry</i> , 2003 , 22, 605-61	4 14.6	84
325	Direct determination of biogenic amines in wine by integrating continuous flow clean-up and capillary electrophoresis with indirect UV detection. <i>Journal of Chromatography A</i> , 1998 , 803, 249-60	4.5	81
324	Molecularly imprinted polymers for selective piezoelectric sensing of small molecules. <i>TrAC - Trends in Analytical Chemistry</i> , 2008 , 27, 54-65	14.6	78
323	Selective extraction and determination of catecholamines in urine samples by using a dopamine magnetic molecularly imprinted polymer and capillary electrophoresis. <i>Talanta</i> , 2012 , 99, 897-903	6.2	71
322	Selective extraction of astaxanthin from crustaceans by use of supercritical carbon dioxide. <i>Talanta</i> , 2004 , 64, 726-31	6.2	70
321	Use of toxicity assays for enantiomeric discrimination of pharmaceutical substances. <i>Chirality</i> , 2009 , 21, 751-9	2.1	68
320	Determination of trans-resveratrol and other polyphenols in wines by a continuous flow sample clean-up system followed by capillary electrophoresis separation. <i>Analytica Chimica Acta</i> , 1998 , 359, 27	-386	68
319	Flow injectionadapillary electrophoresis coupling to automate on-line sample treatment for the determination of inorganic ions in waters. <i>Journal of Chromatography A</i> , 1997 , 791, 279-287	4.5	66
318	Liquid-liquid extraction in continuous flow systems without phase separation. <i>Analytical Chemistry</i> , 1988 , 60, 2354-2357	7.8	65
317	Screening and analytical confirmation of sulfonamide residues in milk by capillary electrophoresis-mass spectrometry. <i>Electrophoresis</i> , 2005 , 26, 1567-75	3.6	61
316	Quality assurance of qualitative analysis in the framework of the European project âMEQUALANâ Accreditation and Quality Assurance, 2003, 8, 68-77	0.7	58

315	Screening of aflatoxins in feed samples using a flow system coupled to capillary electrophoresis. Journal of Chromatography A, 2002 , 967, 303-14	4.5	57	
314	Rapid determination of trace levels of tetracyclines in surface water using a continuous flow manifold coupled to a capillary electrophoresis system. <i>Analytica Chimica Acta</i> , 2004 , 517, 89-94	6.6	56	
313	Multidetection in unsegmented flow systems with a single detector. <i>Analytical Chemistry</i> , 1985 , 57, 18	037.1880	9 56	
312	Magnetic cellulose nanoparticles coated with ionic liquid as a new material for the simple and fast monitoring of emerging pollutants in waters by magnetic solid phase extraction. <i>Microchemical Journal</i> , 2018 , 137, 490-495	4.8	56	
311	Determination of nonsteroidal anti-inflammatory drugs in biological fluids by automatic on-line integration of solid-phase extraction and capillary electrophoresis. <i>Electrophoresis</i> , 2001 , 22, 484-90	3.6	55	
310	Direct automatic determination of biogenic amines in wine by flow injection-capillary electrophoresis-mass spectrometry. <i>Electrophoresis</i> , 2004 , 25, 3427-33	3.6	54	
309	Coupling continuous separation techniques to capillary electrophoresis. <i>Journal of Chromatography A</i> , 2001 , 924, 3-30	4.5	52	
308	Hybrid nanoparticles based on magnetic multiwalled carbon nanotube-nanoC18SiO2 composites for solid phase extraction of mycotoxins prior to their determination by LC-MS. <i>Mikrochimica Acta</i> , 2016 , 183, 871-880	5.8	50	
307	Microwave-assisted synthesis of carbon dots and its potential as analysis of four heterocyclic aromatic amines. <i>Talanta</i> , 2015 , 132, 845-50	6.2	49	
306	Fluorescent chemosensor for pyridine based on N-doped carbon dots. <i>Journal of Colloid and Interface Science</i> , 2015 , 458, 209-16	9.3	48	
305	Ionic liquids supported on magnetic nanoparticles as a sorbent preconcentration material for sulfonylurea herbicides prior to their determination by capillary liquid chromatography. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 404, 1529-38	4.4	48	
304	On-line ion-exchange preconcentration in a flow injection system coupled to capillary electrophoresis for the direct determination of UV absorbing anions. <i>Analytica Chimica Acta</i> , 1999 , 390, 39-44	6.6	48	
303	Liquid-phase microextraction techniques for simplifying sample treatment in capillary electrophoresis. <i>TrAC - Trends in Analytical Chemistry</i> , 2009 , 28, 842-853	14.6	47	
302	Determination of pesticides in waters by automatic on-line solid-phase extraction-capillary electrophoresis. <i>Journal of Chromatography A</i> , 2000 , 866, 137-46	4.5	47	
301	The hierarchy and relationships of analytical properties. <i>Analytical Chemistry</i> , 1993 , 65, 781A-787A	7.8	47	
300	Determination of zearalenone and its metabolites in urine samples by liquid chromatography with electrochemical detection using a carbon nanotube-modified electrode. <i>Journal of Chromatography A</i> , 2008 , 1212, 54-60	4.5	45	
299	Simultaneous flow-injection determination of chlorpromazine and promethazine by photochemical reaction. <i>Talanta</i> , 1991 , 38, 1227-33	6.2	45	
298	Micro-electromechanical sensors in the analytical field. <i>Analyst, The</i> , 2009 , 134, 1274-90	5	44	

297	Analytical Nanoscience and Nanotechnology: Where we are and where we are heading. <i>Talanta</i> , 2018 , 177, 104-121	6.2	43
296	Fast supercritical fluid extraction of low- and high-density polyethylene additives: Comparison with conventional reflux and automatic Soxhlet extraction. <i>Journal of Supercritical Fluids</i> , 2009 , 50, 22-28	4.2	43
295	Supported liquid membrane-modified piezoelectric flow sensor with molecularly imprinted polymer for the determination of vanillin in food samples. <i>Talanta</i> , 2007 , 72, 1362-9	6.2	43
294	Supported liquid membranes for the determination of vanillin in food samples with amperometric detection. <i>Analytica Chimica Acta</i> , 2000 , 410, 127-134	6.6	43
293	Nanomaterials for water cleaning and desalination, energy production, disinfection, agriculture and green chemistry. <i>Environmental Chemistry Letters</i> , 2018 , 16, 11-34	13.3	43
292	A PVCâgraphite composite electrode for electroanalytical use. Preparation and some applications. <i>Analytica Chimica Acta</i> , 1997 , 355, 23-32	6.6	42
291	Determination of nitrosamines in preserved sausages by solid-phase extraction-micellar electrokinetic chromatography. <i>Journal of Chromatography A</i> , 2003 , 985, 503-12	4.5	42
290	Automatic titrations in unsegmented flow systems based on variable flow-rate patterns: Part 1. Principles and applications to acid-base titrations. <i>Analytica Chimica Acta</i> , 1992 , 261, 489-494	6.6	42
289	PhotochemicalaBpectrofluorimetric determination of phenothiazine compounds by unsegmented-flow methods. <i>Analyst, The</i> , 1991 , 116, 171-176	5	42
288	Analytical potential of flow-reversal injection analysis. <i>Analytical Chemistry</i> , 1988 , 60, 1540-1545	7.8	42
287	Determination of total safranal by in situ acid hydrolysis in supercritical fluid media: Application to the quality control of commercial saffron. <i>Analytica Chimica Acta</i> , 2006 , 578, 117-21	6.6	40
286	In-line liquid-phase microextraction for selective enrichment and direct electrophoretic analysis of acidic drugs. <i>Electrophoresis</i> , 2007 , 28, 3284-9	3.6	39
285	Use of Cdse/ZnS quantum dots for sensitive detection and quantification of paraquat in water samples. <i>Analytica Chimica Acta</i> , 2013 , 801, 84-90	6.6	37
284	Determination of free and total sulphur dioxide in wine by use of an amalgamated piezoelectric sensor. <i>Analytica Chimica Acta</i> , 2005 , 535, 65-72	6.6	37
283	A method for screening total mercury in water using a flow injection system with piezoelectric detection. <i>Analytical Chemistry</i> , 2002 , 74, 921-5	7.8	37
282	Continuous-flow method for the determination of phenols at low levels in water and soil leachates using solid-phase extraction for simultaneous preconcentration and separation. <i>Analyst, The</i> , 1996 , 121, 1-6	5	37
281	Development and Characterization of Carbon Based Electrodes from Pyrolyzed Paper for Biosensing Applications. <i>Journal of Electroanalytical Chemistry</i> , 2016 , 765, 8-15	4.1	36
280	Simultaneous multiwavelength detection in flow injection analysis. <i>Analytica Chimica Acta</i> , 1986 , 179, 279-287	6.6	36

279	New approach to the simultaneous determination of pollutants in waste waters by flow injection analysis. Part I. Anionic pollutants. <i>Analyst, The</i> , 1984 , 109, 1487-92	5	36
278	Magnetic/non-magnetic argan press cake nanocellulose for the selective extraction of sudan dyes in food samples prior to the determination by capillary liquid chromatograpy. <i>Talanta</i> , 2017 , 166, 63-69	6.2	35
277	ECyclodextrin coated CdSe/ZnS quantum dots for vanillin sensoring in food samples. <i>Talanta</i> , 2015 , 131, 286-91	6.2	35
276	Unreliability of screening methods. <i>Analytica Chimica Acta</i> , 2004 , 516, 67-74	6.6	35
275	Use of non-aqueous capillary electrophoresis for the quality control of commercial saffron samples. <i>Journal of Chromatography A</i> , 2005 , 1085, 293-8	4.5	35
274	Configuration with internally coupled valves to overcome shortcomings in the simultaneous determination of nitrite and nitrate by flow-injection analysis. <i>Talanta</i> , 1988 , 35, 810-2	6.2	35
273	On-line coupling of solid-phase microextraction to commercial CE-MS equipment. <i>Electrophoresis</i> , 2007 , 28, 1312-8	3.6	34
272	Carbon nanotubes magnetic hybrid nanocomposites for a rapid and selective preconcentration and clean-up of mercury species in water samples. <i>Talanta</i> , 2018 , 179, 442-447	6.2	34
271	Automatic selective determination of caffeine in coffee and tea samples by using a supported liquid membrane-modified piezoelectric flow sensor with molecularly imprinted polymer. <i>Analytica Chimica Acta</i> , 2005 , 539, 117-124	6.6	33
270	Automatic on-line coupling of supercritical fluid extraction and capillary electrophoresis. <i>Analytical Chemistry</i> , 2000 , 72, 5736-9	7.8	33
269	Rapid determination of aliphatic amines in water samples by pressure-assisted monolithic octadecylsilica capillary electrochromatography-mass spectrometry. <i>Electrophoresis</i> , 2004 , 25, 3231-6	3.6	32
268	Electrochemical determination of sulfur dioxide in air samples in closed-loop flow injection system. <i>Analytical Chemistry</i> , 1987 , 59, 666-670	7.8	32
267	Feedback-Seeking Behavior in Language Learning: Basic Components and Motivational Antecedents. <i>Modern Language Journal</i> , 2019 , 103, 205-226	4.7	31
266	A novel approach to size separation of gold nanoparticles by capillary electrophoresisâ\textbf{B}\text{vaporative light scattering detection. } RSC Advances, \textbf{2015}, 5, 16672-16677	3.7	31
265	Determination of sudan dyes in food samples using supercritical fluid extractionadapillary liquid chromatography. <i>Journal of Supercritical Fluids</i> , 2011 , 55, 977-982	4.2	31
264	Determination of myo-inositol phosphates in food samples by flow injection-capillary zone electrophoresis. <i>Electrophoresis</i> , 2003 , 24, 2092-8	3.6	31
263	New configuration for construction of pH gradients in flow injection analysis. <i>Analytical Chemistry</i> , 1986 , 58, 663-664	7.8	31
262	Magnetic nanoparticles-carbon nanotubes hybrid composites for selective solid-phase extraction of polycyclic aromatic hydrocarbons and determination by ultra-high performance liquid chromatography. <i>Analytical and Biognalytical Chemistry</i> 2017 , 409, 5125-5132	4.4	30

261	The analytical problem. <i>TrAC - Trends in Analytical Chemistry</i> , 1997 , 16, 385-393	14.6	30
260	New supported liquid membrane-capillary electrophoresis in-line arrangement for direct selective analysis of complex samples. <i>Electrophoresis</i> , 2006 , 27, 3075-85	3.6	30
259	Screening and confirmation of PAHs in vegetable oil samples by use of supercritical fluid extraction in conjunction with liquid chromatography and fluorimetric detection. <i>Analytica Chimica Acta</i> , 2004 , 525, 265-271	6.6	30
258	Coupling Continuous Sample Treatment Systems to Capillary Electophoresis. <i>Critical Reviews in Analytical Chemistry</i> , 1998 , 28, 63-81	5.2	30
257	Enantiomeric separation of D- and L-carnitine by integrating on-line derivatization with capillary zone electrophoresis. <i>Journal of Chromatography A</i> , 1999 , 849, 609-16	4.5	30
256	Determination of chlorophenols in human urine based on the integration of on-line automated clean-up and preconcentration unit with micellar electrokinetic chromatography. <i>Electrophoresis</i> , 1999 , 20, 2922-9	3.6	30
255	Analytical metrology for nanomaterials: Present achievements and future challenges. <i>Analytica Chimica Acta</i> , 2019 , 1059, 1-15	6.6	29
254	Microwave-assisted synthesis of water soluble thiol capped CdSe/ZnS quantum dots and its interaction with sulfonylurea herbicides. <i>Journal of Colloid and Interface Science</i> , 2014 , 428, 235-41	9.3	29
253	Nanoparticle-based assay for the detection of virgin argan oil adulteration and its rapid quality evaluation. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 399, 2395-405	4.4	29
252	Supercritical fluid extraction of t-resveratrol and other phenolics from a spiked solid. <i>Freseniuso Journal of Analytical Chemistry</i> , 1998 , 361, 143-148		29
251	Monitoring of bacterial contamination in food samples using capillary zone electrophoresis. <i>Analytical Chemistry</i> , 2004 , 76, 3012-7	7.8	29
250	An automated screening method for the fast, simple discrimination between natural and artificial colorants in commercial saffron products. <i>Analytica Chimica Acta</i> , 2005 , 535, 133-138	6.6	29
249	Methodology for monitoring gold nanoparticles and dissolved gold species in culture medium and cells used for nanotoxicity tests by liquid chromatography hyphenated to inductively coupled plasma-mass spectrometry. <i>Talanta</i> , 2017 , 164, 451-457	6.2	28
248	Synthesis of CuNP-Modified Carbon Electrodes Obtained by Pyrolysis of Paper. <i>Sensors and Actuators B: Chemical</i> , 2016 , 227, 626-633	8.5	28
247	Flow-injection configurations for chromium speciation with a single spectrophotometric detector. <i>Analytica Chimica Acta</i> , 1986 , 186, 139-146	6.6	28
246	Use of gold nanoparticle-coated sorbent materials for the selective preconcentration of sulfonylurea herbicides in water samples and determination by capillary liquid chromatography. <i>Talanta</i> , 2013 , 105, 372-8	6.2	27
245	Sample preparation for micro total analytical systems (ETASs). <i>TrAC - Trends in Analytical Chemistry</i> , 2013 , 43, 174-188	14.6	27
244	Determination of alkenylbenzenes and related flavour compounds in food samples by on-column preconcentration-capillary liquid chromatography. <i>Journal of Chromatography A</i> , 2009 , 1216, 7179-85	4.5	27

Rapid sample screening method for authenticity controlling vanilla flavors using a CE microchip approach with electrochemical detection. <i>Electrophoresis</i> , 2007 , 28, 4233-9	3.6	27	
Automatic sample preparation in commercial capillary-electrophoresis equipment. <i>TrAC - Trends in Analytical Chemistry</i> , 2006 , 25, 968-976	14.6	27	
Quantum Dot-Modified Paper-Based Assay for Glucose Screening. <i>Mikrochimica Acta</i> , 2016 , 183, 611-61	6 5.8	26	
Analysis of penicillamine using Cu-modified graphene quantum dots synthesized from uric acid as single precursor. <i>Journal of Pharmaceutical Analysis</i> , 2017 , 7, 324-331	14	26	
Magnetic molecular imprint-based extraction of sulfonylurea herbicides and their determination by capillary liquid chromatography. <i>Mikrochimica Acta</i> , 2013 , 180, 363-370	5.8	26	
Bioanalytical applications using supercritical fluid techniques. <i>Bioanalysis</i> , 2010 , 2, 9-25	2.1	26	
Use of calixarene compounds as selectivity modifiers in capillary electrophoresis separations. Journal of Chromatography A, 1998 , 816, 243-249	4.5	26	
A poly(vinyl choloride) graphite composite electrode for flow-injection amperometric determination of antioxidants. <i>Analytica Chimica Acta</i> , 1999 , 395, 217-223	6.6	26	
Determination of pH, conductivity, residual chlorine and ammonium and nitrite lons in water with an unsegmented flow configuration. <i>Analyst, The</i> , 1988 , 113, 739-742	5	26	
Modern qualitative analysis by miniaturized and microfluidic systems. <i>TrAC - Trends in Analytical Chemistry</i> , 2015 , 69, 105-113	14.6	25	
State-of-the-art of (bio)chemical sensor developments in analytical Spanish groups. <i>Sensors</i> , 2010 , 10, 2511-76	3.8	25	
Self-assembled monolayer-based piezoelectric flow immunosensor for the determination of canine immunoglobulin. <i>Biosensors and Bioelectronics</i> , 2007 , 22, 3217-23	11.8	25	
Supercritical fluid extraction as an on-line clean-up technique for rapid amperometric screening and alternative liquid chromatography for confirmation of paraquat and diquat in olive oil samples. <i>Journal of Chromatography A</i> , 2008 , 1204, 56-61	4.5	25	
Analysis of solid samples by capillary electrophoresis using a gas extraction sampling device in a flow system. <i>Analytica Chimica Acta</i> , 2001 , 438, 315-322	6.6	25	
An automated flow-reversal injection/liquidâllquid extraction approach to the direct determination of total free fatty acids in olive oils. <i>Analytica Chimica Acta</i> , 1996 , 318, 187-194	6.6	25	
Analytical potential of flow gradients in unsegmented flow systems. <i>Analytica Chimica Acta</i> , 1990 , 239, 211-220	6.6	25	
Use of photochemical reactions in flow injection: determination of oxalate in urine. <i>Analyst, The</i> , 1990 , 115, 1549-52	5	25	
Multidetection flow-injection techniques for manipulation of sensitivity. <i>Analytica Chimica Acta</i> , 1987 , 199, 15-27	6.6	25	
	Automatic sample preparation in commercial capillary-electrophoresis equipment. <i>TrAC - Trends in Analytical Chemistry</i> , 2006 , <i>25</i> , 968-976 Quantum Dot-Modified Paper-Based Assay for Glucose Screening. <i>Mikrochimica Acta</i> , 2016 , 183, 611-61 Analysis of penicillamine using Cu-modified graphene quantum dots synthesized from uric acid as single precursor. <i>Journal of Pharmaceutical Analysis</i> , 2017 , 7, 324-331 Magnetic molecular imprint-based extraction of sulfonylurea herbicides and their determination by capillary liquid chromatography. <i>Mikrochimica Acta</i> , 2013 , 180, 363-370 Bioanalytical applications using supercritical fluid techniques. <i>Bioanalysis</i> , 2010 , 2, 9-25 Use of calixarene compounds as selectivity modifiers in capillary electrophoresis separations. <i>Journal of Chromatography A</i> , 1998 , 816, 243-249 A poly(vinyl choloride) graphite composite electrode for flow-injection amperometric determination of antioxidants. <i>Analytica Chimica Acta</i> , 1999 , 395, 217-223 Determination of pH, conductivity, residual chlorine and ammonium and nitrite lons in water with an unsegmented flow configuration. <i>Analyst, The</i> , 1988 , 113, 739-742 Modern qualitative analysis by miniaturized and microfluidic systems. <i>TrAC - Trends in Analytical Chemistry</i> , 2015 , 69, 105-113 State-of-the-art of (bio)chemical sensor developments in analytical Spanish groups. <i>Sensors</i> , 2010 , 10, 251-76 Self-assembled monolayer-based piezoelectric flow immunosensor for the determination of canine immunoglobulin. <i>Biosensors and Bioelectronics</i> , 2007 , 22, 3217-23 Supercritical fluid extraction as an on-line clean-up technique for rapid amperometric screening and alternative liquid chromatography for confirmation of paraquat and diquat in olive oil samples. <i>Journal of Chromatography A</i> , 2008 , 1204, 56-61 Analysis of solid samples by capillary electrophoresis using a gas extraction sampling device in a flow system. <i>Analytica Chimica Acta</i> , 2001 , 438, 315-322 An automated flow-reversal injection/liquidaliquid e	Automatic sample preparation in commercial capillary-electrophoresis equipment. <i>TrAC - Trends in Analytical Chemistry</i> , 2006, 25, 968-976 Quantum Dot-Modified Paper-Based Assay for Glucose Screening. <i>Mikrochimica Acta</i> , 2016, 183, 611-616;.8 Analysis of penicillamine using Cu-modified graphene quantum dots synthesized from uric acid as single precursor. <i>Journal of Pharmaceutical Analysis</i> , 2017, 7, 324-331 Magnetic molecular imprint-based extraction of sulfonylurea herbicides and their determination by capillary liquid chromatography. <i>Mikrochimica Acta</i> , 2013, 180, 363-370 Bioanalytical applications using supercritical fluid techniques. <i>Bioanalysis</i> , 2010, 2, 9-25 2.1 Use of calixarene compounds as selectivity modifiers in capillary electrophoresis separations. <i>Journal of Chromatography A</i> , 1998, 816, 243-249 A poly(vinyl choloride) graphite composite electrode for flow-injection amperometric determination of particoloristics. <i>Analytica Chimica Acta</i> , 1999, 395, 217-223 Determination of ppt, conductivity, residual chlorine and ammonium and nitrite lons in water with an unsegmented flow configuration. <i>Analyst</i> , <i>The</i> , 1988, 113, 739-742 Self-assembled monolayer-based piezoelectric flow immunosensor for the determination of canine immunoglobulin. <i>Biosensors and Bioelectronics</i> , 2007, 22, 3217-23 Supercritical fluid extraction as an on-line clean-up technique for rapid amperometric screening and alternative liquid chromatography for confirmation of paraquat and diquat in olive oil samples. Journal of Chromatography A, 2008, 1204, 56-61 Analysis of solid samples by capillary electrophoresis using a gas extraction sampling device in a flow system. <i>Analytica Chimica Acta</i> , 2001, 438, 315-322 An automated flow-reversal injection/liquidálquid extraction approach to the direct determination of total free fatty acids in olive oils. <i>Analytica Chimica Acta</i> , 1996, 318, 187-194 Analytical potential of flow gradients in unsegmented flow systems. <i>Analytica Chimica Acta</i> , 1990, 239, 211-220 Use of p	approach with electrochemical detection. <i>Electrophoresis</i> , 2007, 28, 4233-9 Automatic sample preparation in commercial capillary-electrophoresis equipment. <i>TrAC-Trends in Analytical Chemistry</i> , 2006, 25, 968-976 Quantum Dot-Modified Paper-Based Assay for Glucose Screening. <i>Mikrochimica Acta</i> , 2016, 183, 611-616;8 26 Analysis of penicillamine using Cu-modified graphene quantum dots synthesized from uric acid as single precursor. <i>Journal of Pharmaceutical Analysis</i> , 2017, 7, 324-331 Magnetic molecular imprint-based extraction of sulfonylurea herbicides and their determination by capillary liquid chromatography. <i>Mikrochimica Acta</i> , 2013, 180, 363-370 Bioanalytical applications using supercritical fluid techniques. <i>Bioanalysis</i> , 2010, 2, 9-25 21. 26 Use of calixarene compounds as selectivity modifiers in capillary electrophoresis separations. Journal of Chromatography A, 1998, 816, 243-249 A poly(vinyl choloride) graphite composite electrode for flow-injection amperometric determination of antioxidants. <i>Analytica Chimica Acta</i> , 1999, 395, 217-223 Determination of pH, conductivity, residual chlorine and ammonium and nitrite lons in water with an unsegmented flow configuration. <i>Analyst</i> , 7he, 1988, 113, 739-742 Modern qualitative analysis by miniaturized and microfluidic systems. <i>TrAC-Trends in Analytical</i> 14.6 25 Mate-of-the-art of (bio)chemical sensor developments in analytical Spanish groups. <i>Sensors</i> , 2010, 10, 2511-76 State-of-the-art of (bio)chemical sensor developments in analytical Spanish groups. <i>Sensors</i> , 2010, 10, 2511-76 Supercritical fluid extraction as an on-line clean-up technique for rapid amperometric screening and alternative liquid chromatography Ar. 2008, 1204, 56-61 Analysis of solid samples by capillary electrophoresis using a gas extraction sampling device in a flow system. <i>Analytica Chimica Acta</i> , 2001, 438, 315-322 Multidetection flow-impection techniques for manipulation of sensitivity. <i>Analytica Chimica Acta</i> , 1990, 115, 1549-52 Multidetection flow-injection

225	New approach to the simultaneous determination of pollutants in waste waters by flow injection analysis. Part II. Cationic pollutants. <i>Analyst, The</i> , 1985 , 110, 277-281	5	25
224	Discrimination of penicillamine enantiomers using Eyclodextrin modified CdSe/ZnS quantum dots. <i>Mikrochimica Acta</i> , 2017 , 184, 815-824	5.8	24
223	Screening of non-polar heterocyclic amines in urine by microextraction in packed sorbent-fluorimetric detection and confirmation by capillary liquid chromatography. <i>Talanta</i> , 2011 , 83, 1562-7	6.2	24
222	Selective and rapid determination of biogenic amines by capillary zone electrophoresis. <i>Chromatographia</i> , 1997 , 46, 170-176	2.1	24
221	Flow-injection spectrophotometric determination of citric acid in beverages based on a photochemical reaction. <i>Analytica Chimica Acta</i> , 1998 , 366, 231-240	6.6	24
220	Supercritical fluid extraction as an on-line clean-up technique for determination of riboflavin vitamins in food samples by capillary electrophoresis with fluorimetric detection. <i>Electrophoresis</i> , 2008 , 29, 3213-9	3.6	24
219	Supercritical fluid extraction of macrocyclic lactone mycotoxins in maize flour samples for rapid amperometric screening and alternative liquid chromatographic method for confirmation. <i>Journal of Chromatography A</i> , 2008 , 1177, 50-7	4.5	24
218	Integrated photochemical reaction/electrochemical detection in flow-injection systems: kinetic determination of oxalate. <i>Analytica Chimica Acta</i> , 1990 , 234, 227-232	6.6	24
217	Simultaneous determination of phenolic compounds in water by normal and derivative flow injection/cyclic votammetry. <i>Analytica Chimica Acta</i> , 1988 , 214, 375-384	6.6	24
216	Spectrophotometric determination of cyanide by unsegmented flow methods. <i>Talanta</i> , 1984 , 31, 673-8	6.2	24
215	Determination of vitamin C by flow injection analysis. <i>Analyst, The</i> , 1986 , 111, 163-6	5	24
214	Determination of vanillin by using gold nanoparticle-modified screen-printed carbon electrode modified with graphene quantum dots and Nafion. <i>Mikrochimica Acta</i> , 2018 , 185, 204	5.8	23
213	Fast single run of vanilla fingerprint markers on microfluidic-electrochemistry chip for confirmation of common frauds. <i>Electrophoresis</i> , 2009 , 30, 3413-8	3.6	23
212	Analytical potential of enzyme-coated capillary reactors in capillary zone electrophoresis. <i>Electrophoresis</i> , 2004 , 25, 50-6	3.6	23
211	Flow injection spectrophotometric determination of ascorbic acid in soft drinks and beer. <i>Freseniuso Journal of Analytical Chemistry</i> , 2000 , 366, 857-62		23
210	Flow injection analysis: a new approach to pharmaceutical determinations. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 1985 , 3, 105-12	3.5	23
209	Determination of heterocyclic aromatic amines in fried beefsteak, meat extract, and fish by capillary zone electrophoresis. <i>Chromatographia</i> , 1998 , 48, 700-706	2.1	22
208	Direct automatic screening and individual determination of polycyclic aromatic hydrocarbons using supercritical fluid extraction coupled on-line with liquid chromatography and fluorimetric detection. <i>Analytica Chimica Acta</i> , 2004 , 524, 279-285	6.6	22

(2005-1986)

207	Simultaneous determination by iterative spectrophotometric detection in a closed flow system. <i>Analytica Chimica Acta</i> , 1986 , 179, 463-468	6.6	22
206	Analytical control of nanodelivery lipid-based systems for encapsulation of nutraceuticals: Achievements and challenges. <i>Trends in Food Science and Technology</i> , 2019 , 90, 47-62	15.3	21
205	Determination of phenolic constituents in citrus samples by on-line coupling of a flow system with capillary electrophoresis. <i>Electrophoresis</i> , 2001 , 22, 1553-60	3.6	21
204	Automatic titrations in unsegmented flow systems based on variable flow-rate patterns: Part 2. Complexometric and redox titrations. <i>Analytica Chimica Acta</i> , 1992 , 261, 495-503	6.6	21
203	Automatic continuous-flow determination of paraquat at the subnanogram per millilitre level. <i>Analytica Chimica Acta</i> , 1993 , 281, 103-109	6.6	21
202	Analysis of silica nanoparticles by capillary electrophoresis coupled to an evaporative light scattering detector. <i>Analytica Chimica Acta</i> , 2016 , 923, 82-8	6.6	21
201	Determination of sulfonamides in milk samples by HPLC with amperometric detection using a glassy carbon electrode modified with multiwalled carbon nanotubes. <i>Journal of Separation Science</i> , 2014 , 37, 382-9	3.4	20
200	Screening and confirmatory methods for the analysis of macrocyclic lactone mycotoxins by CE with amperometric detection. <i>Electrophoresis</i> , 2009 , 30, 499-506	3.6	20
199	Direct multiparametric determination of anions in soil samples by integrating on-line automated extraction/filtering with capillary electrophoresis. <i>FreseniusoJournal of Analytical Chemistry</i> , 1998 , 360, 697-701		20
198	Development of a screening method for analytical control of antibiotic residues by micellar electrokinetic capillary chromatography. <i>Analytica Chimica Acta</i> , 2004 , 523, 21-28	6.6	20
197	Development of a new method for the determination of nitrosamines by micellar electrokinetic capillary chromatography. <i>Water Research</i> , 2003 , 37, 3837-42	12.5	20
196	Automatic microgravimetric determination of fats in milk products by use of supercritical fluid extraction with on-line piezoelectric detection. <i>Journal of Chromatography A</i> , 2000 , 874, 265-74	4.5	20
195	Perspective. Traceability in analytical chemistry. <i>Analyst, The</i> , 1995 , 120, 2291-2297	5	20
194	Direct Processing and Analysis of Solid and Other Complex Samples with Automatic Flow Injection Systems. <i>Critical Reviews in Analytical Chemistry</i> , 1996 , 26, 239-260	5.2	20
193	Determination of neonicotinoid insecticides in environmental samples by micellar electrokinetic chromatography using solid-phase treatments. <i>Electrophoresis</i> , 2012 , 33, 2969-77	3.6	19
192	Achiral liquid chromatography with circular dichroism detection for the determination of carnitine enantiomers in dietary supplements and pharmaceutical formulations. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2010 , 51, 478-83	3.5	19
191	Alternatives for coupling sequential injection systems to commercial capillary electrophoresis-mass spectrometry equipment. <i>Journal of Chromatography A</i> , 2006 , 1127, 278-85	4.5	19
190	Direct determination of total carbonate salts in soil samples by continuous-flow piezoelectric detection. <i>Talanta</i> , 2005 , 65, 29-35	6.2	19

189	Direct Determination of Trimethylamine in Fish in the Flow-Reversal Injection Mode Using a Gas Extraction Sampling Device. <i>Analytical Chemistry</i> , 1995 , 67, 871-877	7.8	19
188	Analytical viewpoint. Representativeness of analytical results. <i>Analyst, The</i> , 1994 , 119, 109-112	5	19
187	Simultaneous and sequential determination of chromium(VI) and chromium(III) by unsegmented flow methods. <i>Fresenius Zeitschrift Fil Analytische Chemie</i> , 1985 , 322, 499-502		19
186	Ionic liquid dispersive liquid-liquid microextraction combined with LC-UV-Vis for the fast and simultaneous determination of cortisone and cortisol in human saliva samples. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2019 , 165, 141-146	3.5	19
185	Determination of antidepressants in human urine extracted by magnetic multiwalled carbon nanotube poly(styrene-co-divinylbenzene) composites and separation by capillary electrophoresis. <i>Electrophoresis</i> , 2018 , 39, 1808	3.6	18
184	Amperometric screening of bacterial food contamination using a composite modified electrode. <i>Analytica Chimica Acta</i> , 2004 , 524, 167-174	6.6	18
183	Supercritical fluid extraction with in situ chiral derivatization for the enantiospecific determination of ibuprofen in urine samples. <i>Analytica Chimica Acta</i> , 2001 , 450, 1-11	6.6	18
182	Use of supported liquid membranes incorporated in a flow system for the direct determination of eugenol in spice samples. <i>Analyst, The</i> , 2000 , 125, 1805-9	5	18
181	Separation and determination of carnitine and acyl-carnitines by capillary electrophoresis with indirect UV detection. <i>Analytica Chimica Acta</i> , 1999 , 382, 23-31	6.6	18
180	Photochemical determination of ascorbic acid using unsegmented flow methods. <i>Analyst, The</i> , 1992 , 117, 1761-1765	5	18
179	Multiple peak recordings in flow injection analysis. <i>Analytica Chimica Acta</i> , 1989 , 216, 275-288	6.6	18
178	Simultaneous flow-injection flourimetric determination of ammonia and hydrazine with a novel mode of forming pH gradients. <i>Analytica Chimica Acta</i> , 1986 , 187, 139-145	6.6	18
177	Determination of analytical parameters in drinking water by flow injection analysis. Part 2. Simultaneous determination of calcium and magnesium. <i>Analyst, The</i> , 1987 , 112, 267-70	5	18
176	Determination of analytical parameters in drinking water by flow injection analysis. Part 1. Simultaneous determination of pH, alkalinity and total ionic concentration. <i>Analyst, The</i> , 1987 , 112, 263	-ର୍ଡ	18
175	Detection of Dopamine in Human Fluids Using N-Doped Carbon Dots. <i>ACS Applied Nano Materials</i> , 2020 , 3, 8004-8011	5.6	18
174	Monitoring inorganic mercury and methylmercury species with liquid chromatographyâßiezoelectric detection. <i>Analytica Chimica Acta</i> , 2004 , 511, 289-294	6.6	17
173	Piezoelectric screening coupled on line to capillary electrophoresis for detection and speciation of mercury. <i>Journal of Separation Science</i> , 2002 , 25, 319-327	3.4	17
172	Analysis of gaseous samples by flow injection. <i>Analytica Chimica Acta</i> , 1989 , 224, 127-132	6.6	17

171	Fluorimetric determination of ammonia, hydrazine and hydroxylamine and their mixtures by differential kinetic methods. <i>Fresenius Zeitschrift Fl Analytische Chemie</i> , 1985 , 320, 762-768		17	
170	Decoration of multi-walled carbon nanotubes with metal nanoparticles in supercritical carbon dioxide medium as a novel approach for the modification of screen-printed electrodes. <i>Talanta</i> , 2016 , 161, 775-779	6.2	17	
169	Method of determination of nitrosamines in sausages by CO2 supercritical fluid extraction (SFE) and micellar electrokinetic chromatography (MEKC). <i>Journal of Agricultural and Food Chemistry</i> , 2007 , 55, 603-7	5.7	16	
168	Analytical approaches to expanding the use of capillary electrophoresis in routine food analysis. <i>Journal of Separation Science</i> , 2005 , 28, 915-24	3.4	16	
167	Required and delivered analytical information: the need for consistency. <i>TrAC - Trends in Analytical Chemistry</i> , 2000 , 19, 593-598	14.6	16	
166	Continuous liquid-liquid extraction for preconcentration with on-line monitoring. <i>Analytical Chemistry</i> , 1993 , 65, 2941-2943	7.8	16	
165	Determination of glucose in alcoholic beverages by flow injection with two internally coupled injection valves and an enzyme reactor. <i>Analytica Chimica Acta</i> , 1988 , 211, 281-285	6.6	16	
164	Flow-injection analysis with multidetection as a useful technique for metal speciation. <i>Talanta</i> , 1986 , 33, 199-202	6.2	16	
163	Determination of reaction stoichiometries by flow injection analysis: A laboratory exercise. <i>Journal of Chemical Education</i> , 1986 , 63, 552	2.4	16	
162	Nanostructured hybrid surface enhancement Raman scattering substrate for the rapid determination of sulfapyridine in milk samples. <i>Talanta</i> , 2019 , 194, 357-362	6.2	16	
161	Analytical strategy based on asymmetric flow field flow fractionation hyphenated to ICP-MS and complementary techniques to study gold nanoparticles transformations in cell culture medium. <i>Analytica Chimica Acta</i> , 2019 , 1053, 178-185	6.6	16	
160	Development of an Aluminium Doped TiO2 Nanoparticles-modified Screen Printed Carbon Electrode for Electrochemical Sensing of Vanillin in Food Samples. <i>Electroanalysis</i> , 2018 , 30, 969-974	3	15	
159	Validation of a screening method for the rapid control of sulfonamide residues based on electrochemical detection using multiwalled carbon nanotubes-glassy carbon electrodes. <i>Analytical Methods</i> , 2013 , 5, 6821	3.2	15	
158	Simultaneous Automatic Determination of Trace Amounts of Copper and Cobalt by Use of a Flow-through Sensor and First-derivative Spectrometry. <i>Analyst, The</i> , 1997 , 122, 85-88	5	15	
157	Validation of a screening method for rapid control of macrocyclic lactone mycotoxins in maize flour samples. <i>Analytical and Bioanalytical Chemistry</i> , 2008 , 391, 709-14	4.4	15	
156	Automatic calibration in capillary electrophoresis. <i>Electrophoresis</i> , 2000 , 21, 556-62	3.6	15	
155	Traceability in chemical measurements for the end users. <i>TrAC - Trends in Analytical Chemistry</i> , 1999 , 18, 570-576	14.6	15	
154	Continuous liquidâllquid extraction with on-line monitoring for the determination of anionic surfactants in waters. <i>Analyst, The</i> , 1994 , 119, 2097-2100	5	15	

153	Kinetics of ion-pair extraction in continuous flow systems. <i>Analytica Chimica Acta</i> , 1989 , 224, 169-184	6.6	15
152	Automated flow-injection spectrophotometric determination of nitrosamines in solid food samples. <i>FreseniusoJournal of Analytical Chemistry</i> , 2001 , 371, 891-5		14
151	Automatic determination of fat in milk by use of a flow injection system with a piezoelectric detector. <i>Analytica Chimica Acta</i> , 2000 , 406, 309-315	6.6	14
150	Sensitive determination of paraquat and diquat at the sub-ng ml-1 level by continuous amperometric flow methods. <i>Analyst, The</i> , 1998 , 123, 2383-7	5	14
149	Analysis of solid samples using supported liquid membranes: a method for the evaluation of the release of nicotine from Swedish snuff. <i>Analytica Chimica Acta</i> , 1999 , 387, 155-164	6.6	14
148	Sandwich standardization in flow-injection analysis. <i>Talanta</i> , 1989 , 36, 612-4	6.2	14
147	Photometric determination of acidity constants by the flow gradient technique without pH measurements. <i>Analytical Chemistry</i> , 1990 , 62, 2237-2241	7.8	14
146	Synthesis of hybrid magnetic carbon nanotubes âlC18-modified nano SiO2 under supercritical carbon dioxide media and their analytical potential for solid-phase extraction of pesticides. <i>Journal of Supercritical Fluids</i> , 2018 , 137, 66-73	4.2	13
145	Capillary electrophoresis coupled to evaporative light scattering detection for direct determination of underivatized amino acids: application to tea samples using carboxyled single-walled carbon nanotubes for sample preparation. <i>Electrophoresis</i> , 2013 , 34, 2623-31	3.6	13
144	Supercritical fluid extractionachiral liquid chromatography with circular dichroism detection for the determination of menthone enantiomers in natural peppermint oil samples. <i>Talanta</i> , 2009 , 79, 284-	8 ^{6.2}	13
143	Integrated 2-D CE. Electrophoresis, 2007, 28, 1345-51	3.6	13
142	Characterization and analytical validation of a microcantilever-based sensor for the determination of total carbonate in soil samples. <i>Sensors and Actuators B: Chemical</i> , 2008 , 134, 245-251	8.5	13
141	Validation of PVC-Graphite Composite Electrodes for Routine Analytical Work. <i>Electroanalysis</i> , 1999 , 11, 1116-1123	3	13
140	Analytical chemistry and quality. <i>TrAC - Trends in Analytical Chemistry</i> , 1994 , 13, 17-23	14.6	13
139	Simultaneous determination of vanadium and lead in unsegmented flow systems of variable flow rate. <i>FreseniusoJournal of Analytical Chemistry</i> , 1992 , 342, 76-79		13
138	Graphene quantum dots for enhancement of fluorimetric detection coupled to capillary electrophoresis for detection of ofloxacin. <i>Electrophoresis</i> , 2019 , 40, 2336-2341	3.6	12
137	Decoration of graphene oxide with copper selenide in supercritical carbon dioxide medium as a novel approach for electrochemical sensing of eugenol in various samples. <i>Journal of Supercritical Fluids</i> , 2019 , 153, 104597	4.2	12
136	Simultaneous determination of six non-polar heterocyclic amines in meat samples by supercritical fluid extraction-capillary electrophoresis under fluorimetric detection. <i>Electrophoresis</i> , 2010 , 31, 2165-7	.3.6	12

135	Quality assurance in analytical laboratories engaged in research and development activities. <i>Accreditation and Quality Assurance</i> , 2003 , 8, 78-81	0.7	12
134	Reliability of binary analytical responses. <i>TrAC - Trends in Analytical Chemistry</i> , 2005 , 24, 509-515	14.6	12
133	A metrological hierarchy for analytical chemistry. <i>TrAC - Trends in Analytical Chemistry</i> , 1999 , 18, 68-75	14.6	12
132	Reliability of analytical information in the XXIst century. <i>Analytica Chimica Acta</i> , 1999 , 400, 425-432	6.6	12
131	Direct determination of free sulfur dioxide in wine and dried apple samples by using a gas generating and purging device coupled to a continuous flow (injection) system. <i>Analyst, The</i> , 1995 , 120, 2013-2018	5	12
130	Determination of dissolved oxygen by use of a spectrophotometric flow-through sensor. <i>Analytica Chimica Acta</i> , 1993 , 284, 189-193	6.6	12
129	Determination of vitamin C in urine by flow injection analysis. <i>Analyst, The</i> , 1986 , 111, 167-9	5	12
128	Analytical control of Rhodamine B by SERS using reduced graphene decorated with copper selenide. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2019 , 223, 117302	4.4	11
127	Magnetic nanocellulose hybrid nanoparticles and ionic liquid for extraction of neonicotinoid insecticides from milk samples prior to determination by liquid chromatography-mass spectrometry. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and	3.2	11
126	Risk Assessment, 2018 , 35, 1755-1766 Determination of heterocyclic amines in urine samples by capillary liquid chromatography with evaporated light-scattering detection. <i>Analytical and Bioanalytical Chemistry</i> , 2010 , 397, 223-231	4.4	11
125	Integrated Automatic Determination of Nitrate, Ammonium and OrganicCarbon in Soil Samples. <i>Analyst, The</i> , 1997 , 122, 309-313	5	11
124	A view of uncertainty at the bench analytical level. Accreditation and Quality Assurance, 1998, 3, 14-19	0.7	11
123	Coupling continuous flow systems to instruments based on discrete sample introduction. <i>Freseniuso Journal of Analytical Chemistry</i> , 1998 , 362, 58-66		11
122	Fundamentals of capillary electrophoresis. Comprehensive Analytical Chemistry, 2005, 1-30	1.9	11
121	Exploiting the hydrodynamic aspects of continuous-flow systems. <i>Talanta</i> , 1991 , 38, 1359-68	6.2	11
120	Simultaneous kinetic determination of copper, cobalt and nickel by means of -group interchange reactions. <i>Talanta</i> , 1985 , 32, 851-8	6.2	11
119	Ionic liquid and magnetic multiwalled carbon nanotubes for extraction of N-methylcarbamate pesticides from water samples prior their determination by capillary electrophoresis. <i>Talanta</i> , 2021 , 226, 122106	6.2	11
118	Strategies for antidepressants extraction from biological specimens using nanomaterials for analytical purposes: A review. <i>Microchemical Journal</i> , 2019 , 150, 104193	4.8	10

117	A continuous method incorporating Eyclodextrin modified CdSe/ZnS quantum dots for determination of ascorbic acid. <i>Analytical Methods</i> , 2015 , 7, 3472-3479	3.2	10
116	Analytical characterization of alcohol-ethoxylate substances by instrumental separation techniques. <i>TrAC - Trends in Analytical Chemistry</i> , 2011 , 30, 1018-1034	14.6	10
115	Microemulsion electrokinetic chromatography separation by using hexane-in-water microemulsions without cosurfactant: comparison with MEKC. <i>Electrophoresis</i> , 2006 , 27, 4439-45	3.6	10
114	Screening of Polyphenols in Grape Marc by On-Line Supercritical Fluid Extraction âlʿAmperometric Detection with a PVC-Graphite Composite Electrode. <i>Electroanalysis</i> , 2002 , 14, 1427-1432	3	10
113	Development and validation strategies for qualitative spot tests: application to nitrite control in waters. <i>Analytica Chimica Acta</i> , 2005 , 537, 223-230	6.6	10
112	SCREENING OF POLYPHENOLS IN GRAPE MARC BY ON-LINE SUPERCRITICAL FLUID EXTRACTION afflow through sensor. <i>Analytical Letters</i> , 2001 , 34, 1461-1476	2.2	10
111	A new sample-injection/sample-dilution system for the flow-injection analytical technique. <i>Analytica Chimica Acta</i> , 1999 , 381, 287-295	6.6	10
110	Automated simultaneous determination of metal ions by use of variable flow rates in unsegmented systems. <i>Analyst, The</i> , 1992 , 117, 1629-1633	5	10
109	Automatic calibration and dilution in unsegmented flow systems. <i>Analytica Chimica Acta</i> , 1992 , 264, 265	5- Q - B 3	10
108	Automatic determination of MichaelisâMenten constants by the variable flow-rate technique. <i>Analytica Chimica Acta</i> , 1993 , 283, 429-438	6.6	10
107	Injection analysis with flow-gradient systems: a new approach to unsegmented flow techniques. <i>Talanta</i> , 1985 , 32, 845-50	6.2	10
106	Automation of a flow-injection system for multispeciation. <i>Journal of Automated Methods and Management in Chemistry</i> , 1986 , 8, 70-4		10
105	A simple poly(styrene-co-divinylbenzene)-coated glass blood spot method for monitoring of seven antidepressants using capillary liquid chromatography-mass spectrometry. <i>Talanta</i> , 2018 , 188, 772-778	6.2	10
104	Unprecedented high catecholamine production causing hair pigmentation after urinary excretion in red deer. <i>Cellular and Molecular Life Sciences</i> , 2019 , 76, 397-404	10.3	10
103	Graphene quantum dots-terbium ions as novel sensitive and selective time-resolved luminescent probes. <i>Analytical and Bioanalytical Chemistry</i> , 2018 , 410, 391-398	4.4	10
102	Determination of mutagenic amines in water and food samples by high pressure liquid chromatography with amperometric detection using a multiwall carbon nanotubes-glassy carbon electrode. <i>Food Chemistry</i> , 2016 , 192, 343-50	8.5	9
101	Development and Validation of an Electrochemical Screening Methodology for Sulfonamide Residue Control in Milk Samples Using a Graphene Quantum Dots@Nafion Modified Glassy Carbon Electrode. <i>Food Analytical Methods</i> , 2018 , 11, 1711-1721	3.4	9
100	Design and adaptation of an interface for commercial capillary electrophoresis-evaporative light scattering detection coupling. <i>Analytical Chemistry</i> , 2013 , 85, 4858-62	7.8	9

(2006-1997)

99	Quality compromises incorporated in simplex optimisation of a flow injection system. <i>Analytica Chimica Acta</i> , 1997 , 348, 129-134	6.6	9
98	Rapid characterization of fatty alcohol ethoxylates by non-aqueous capillary electrophoresis. <i>Electrophoresis</i> , 2008 , 29, 3060-8	3.6	9
97	Use of wavelet transform to enhance piezoelectric signals for analytical purposes. <i>Analytica Chimica Acta</i> , 2002 , 456, 93-103	6.6	9
96	A sensitive electrochemical sensor based on aluminium doped copper selenide nanoparticles-modified screen printed carbon electrode for determination of L-tyrosine in pharmaceutical samples. <i>Journal of Electroanalytical Chemistry</i> , 2020 , 874, 114466	4.1	9
95	Analytical nanometrological approach for screening and confirmation of titanium dioxide nano/micro-particles in sugary samples based on Raman spectroscopy - Capillary electrophoresis. <i>Analytica Chimica Acta</i> , 2019 , 1050, 169-175	6.6	9
94	A simple analytical methodology for platinum nanoparticles control in complex clinical matrices via SP-ICP-MS. <i>Talanta</i> , 2021 , 231, 122370	6.2	9
93	Analytical reliability of simple, rapid, minuturizated, direct analytical processes: A call to arms. <i>TrAC - Trends in Analytical Chemistry</i> , 2019 , 114, 98-107	14.6	8
92	Magnetic solid phase extraction as a valuable tool for elemental speciation analysis. <i>Trends in Environmental Analytical Chemistry</i> , 2020 , 27, e00097	12	8
91	Point of care creatinine measurement for diagnosis of renal disease using a disposable microchip. <i>Electrophoresis</i> , 2013 , 34, 2956-61	3.6	8
90	Is traceability an exclusive property of analytical results? An extended approach to traceability in chemical analysis. <i>FreseniusoJournal of Analytical Chemistry</i> , 1997 , 359, 473-475		8
89	A practical approach to metrology in chemistry and biology. <i>Accreditation and Quality Assurance</i> , 1999 , 4, 143-152	0.7	8
88	Direct determination of ammonium in solid samples by automatic flow procedures. <i>Analytica Chimica Acta</i> , 1994 , 293, 163-170	6.6	8
87	Assessment of analytical quality in water analysis by flow injection methods. <i>TrAC - Trends in Analytical Chemistry</i> , 1994 , 13, 409-414	14.6	8
86	Automatic implementation of the method of standard additions in unsegmented flow systems. <i>Analytica Chimica Acta</i> , 1995 , 308, 77-84	6.6	8
85	A Comparative Study of Top-Down and Bottom-Up Carbon Nanodots and Their Interaction with Mercury Ions. <i>Nanomaterials</i> , 2021 , 11,	5.4	8
84	A method based on asymmetric flow field flow fractionation hyphenated to inductively coupled plasma mass spectrometry for the monitoring of platinum nanoparticles in water samples. <i>Talanta</i> , 2021 , 222, 121513	6.2	8
83	Enantioselective Supercritical Fluid Extraction from Racemic Mixtures by Use of Chiral Selectors. <i>Separation Science and Technology</i> , 2005 , 39, 459-478	2.5	7
82	Determinaß simultßea de resßuos de cloranfenicol, tianfenicol e florfenicol em leite bovino por cromatografia eletrocinßica micelar. <i>Quimica Nova</i> , 2006 , 29, 926-931	1.6	7

81	Simple unsegmented flow configurations for simultaneous kinetic determinations. <i>Talanta</i> , 1991 , 38, 291-4	6.2	7
80	Erythrosine B âltoated gold nanoparticles as an analytical sensing tool for the proper determination of both compounds based on surface-enhanced Raman spectroscopy. <i>Microchemical Journal</i> , 2020 , 157, 104937	4.8	6
79	A screen-printed electrode modified with silver nanoparticles and carbon nanofibers in a nafion matrix for ionic liquid-based dispersive liquid-liquid microextraction and voltammetric assay of heterocyclic amine 8-MeIQx in food. <i>Mikrochimica Acta</i> , 2020 , 187, 190	5.8	6
78	Dispersed synthesis of uniform Fe3O4 magnetic nanoparticles via in situ decomposition of iron precursor along cotton fibre for Sudan dyes analysis in food samples. <i>Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment</i> , 2017 , 34, 1853-1862	3.2	6
77	Analysis of cypermethrin residues and its main degradation products in soil and formulation samples by gas chromatography-electron impact-mass spectrometry in the selective ion monitoring mode. <i>International Journal of Environmental Analytical Chemistry</i> , 2012 , 92, 1378-1388	1.8	6
76	Analytical characterization of PEG polymers by MEKC. <i>Electrophoresis</i> , 2010 , 31, 679-87	3.6	6
75	Use of basic amphiprotic organic solvents containing neutral-surfactant aggregates as pseudostationary phase in non-aqueous capillary electrophoresis. <i>Analytica Chimica Acta</i> , 2006 , 560, 69-76	6.6	6
74	Determination of mandelic acid enantiomers in urine by derivatization in supercritical carbon dioxide prior to their determination by gas chromatography. <i>Journal of Chromatography A</i> , 2006 , 1104, 331-6	4.5	6
73	Assessment of quality of flow injection methods used in food analysis. A review. <i>Analyst, The</i> , 1995 , 120, 2393-2400	5	6
72	Automatic determination of physico-chemical parameters by the flow-rate gradient technique. <i>TrAC - Trends in Analytical Chemistry</i> , 1992 , 11, 373-378	14.6	6
71	Homogeneous precipitation of palladium dimethylglyoximate by interchange reactions of CN groups. <i>Analyst, The</i> , 1982 , 107, 737-743	5	6
70	Sensoring Strategies Using Quantum Dots: A Critical View. Current Organic Chemistry, 2015, 19, 1134-11	49 7	6
69	LC-MS determination of catecholamines and related metabolites in red deer urine and hair extracted using magnetic multi-walled carbon nanotube poly(styrene-co-divinylbenzene) composite. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences,	3.2	6
68	2020 , 1136, 121878 Discrimination between nanocurcumin and free curcumin using graphene quantum dots as a selective fluorescence probe. <i>Mikrochimica Acta</i> , 2020 , 187, 446	5.8	6
67	Capillary electrophoresis method for the discrimination between natural and artificial vanilla flavor for controlling food frauds. <i>Electrophoresis</i> , 2018 , 39, 1628-1633	3.6	5
66	Enantioselective discrimination of menthone enantiomers by using achiral liquid chromatography with circular dichroism detection and penicillamine-coated gold nanoparticles. <i>Microchemical Journal</i> , 2016 , 124, 736-742	4.8	5
65	Teaching analytical properties. FreseniusoJournal of Analytical Chemistry, 1997, 357, 202-205		5
64	PrEconcentraB de nitrosaminas a partir de amostras aquosas por extraB em fase sEida e cromatografia capilar eletrocinEica micelar. <i>Quimica Nova</i> , 2003 , 26, 193-196	1.6	5

(2014-2002)

63	Determination of monoterpene hydrocarbons and alcohols in Majorana hortensis Moench by micellar electrokinetic capillary chromatographic. <i>Journal of Agricultural and Food Chemistry</i> , 2002 , 50, 4215-20	5.7	5
62	Coupling immobilized enzymes flow reactors with supercritical fluid extraction for analytical purposes. <i>Analyst, The</i> , 2002 , 127, 241-247	5	5
61	Determination of fat in leather by the use of supercritical fluid extraction combined with on-line piezoelectric detection. <i>Analyst, The</i> , 2001 , 126, 938-42	5	5
60	Continuous sample monitoring by flow reversal methodology. <i>FreseniusoJournal of Analytical Chemistry</i> , 1992 , 342, 547-551		5
59	Determination of viscosity with an open-closed flow-injection system. <i>Talanta</i> , 1987 , 34, 915-9	6.2	5
58	Role of valves in non-segmented flow systems. <i>Journal of Automated Methods and Management in Chemistry</i> , 1987 , 9, 30-6		5
57	Kinetic-photometric determination of EDTA, zinc and bismuth by interchange reactions of CNâ groups. <i>Analyst, The</i> , 1984 , 109, 1147-1150	5	5
56	Spectrophotometric determination of acidity-constants of unstable compounds by flow injection analysis. <i>Analytica Chimica Acta</i> , 1985 , 171, 303-312	6.6	5
55	Direct determination of graphene quantum dots based on terbium-sensitized luminescence. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018 , 198, 177-181	4.4	4
54	Use of capillary electrophoresis for characterisation of vinyl-terminated Au nanoprisms and nanooctahedra. <i>Electrophoresis</i> , 2018 , 39, 1437-1442	3.6	4
53	Fluorescence Determination of L-Cysteine in Wound Dressings by Fluoroscein Coated Gold Nanoparticles. <i>Analytical Letters</i> , 2016 , 49, 1221-1232	2.2	4
52	Magnetic multi-walled carbon nanotubes as a valuable option for the preconcentration of non-steroidal anti-inflammatory drugs in water. <i>Separation Science Plus</i> , 2018 , 1, 549-555	1.1	4
51	Simplified determination of bacterial contamination by Escherichia coli using a flow injection system with piezoelectric detection. <i>Mikrochimica Acta</i> , 2011 , 172, 447-454	5.8	4
50	Supercritical fluid immunoextraction: a new approach for immunoassay automation. <i>Analytica Chimica Acta</i> , 2004 , 518, 151-156	6.6	4
49	Practicing Quality Control in a Bioanalytical Experiment. <i>Journal of Chemical Education</i> , 1995 , 72, 947	2.4	4
48	Automatic testing of enzyme modifiers by the flow-gradient technique. <i>Analytica Chimica Acta</i> , 1995 , 308, 152-158	6.6	4
47	Determination of rate constants and reaction orders with an open-closed flow-injection configuration. <i>Talanta</i> , 1991 , 38, 125-32	6.2	4
46	The Applied Side of Capillary Electrophoresis: A Critical View. <i>Current Analytical Chemistry</i> , 2014 , 10, 18	4 ₁ 1 /9 6	4

45	Carbon-based nanodots as effective electrochemical sensing tools toward the simultaneous detection of bioactive compounds in complex matrices. <i>Journal of Electroanalytical Chemistry</i> , 2020 , 878, 114573	4.1	4
44	Surface Polymers on Multiwalled Carbon Nanotubes for Selective Extraction and Electrochemical Determination of Rhodamine B in Food Samples. <i>Molecules</i> , 2021 , 26,	4.8	4
43	Selective screening of glutaric acid acidurias by capillary electrophoresis-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2017 , 145, 40-45	3.5	3
42	AF4-ICP-MS as a powerful tool for the separation of gold nanorods and nanospheres. <i>Journal of Analytical Atomic Spectrometry</i> , 2020 , 35, 1530-1536	3.7	3
41	Magnetic multi-walled carbon nanotube poly(styrene-co-divinylbenzene) for propranolol extraction and separation by capillary electrophoresis. <i>Bioanalysis</i> , 2018 , 10, 1193-1205	2.1	3
40	Pesticide residue levels in peppers cultivated in Souss Masa valley (Morocco) after multiple applications of azoxystrobin and chlorothalonil. <i>International Journal of Environmental Analytical Chemistry</i> , 2013 , 93, 499-510	1.8	3
39	Mechanized Sample Workup Interfaced with Flow System in Flow-Reversal Mode for the Determination of Boric Acid in Adulterated Shellfish. <i>Analytical Chemistry</i> , 1997 , 69, 91-94	7.8	3
38	Coupling continuous flow systems to capillary electrophoresis. <i>Comprehensive Analytical Chemistry</i> , 2005 , 45, 173-223	1.9	3
37	Flow injection spectrophotometric determination of lactic acid in skimmed milk based on a photochemical reaction. <i>Talanta</i> , 1999 , 50, 121-31	6.2	3
36	Rapid automated determination of constants of solubility product and critical micelle concentrations by the flow-rate gradient technique. <i>Talanta</i> , 1993 , 40, 391-8	6.2	3
35	Direct determination of the cation-exchange capacity of soils with automatic sample pretreatment in a flow system. <i>Analytica Chimica Acta</i> , 1994 , 298, 387-392	6.6	3
34	Automatic study of selectivity by the flow-rate gradient technique. <i>Analytica Chimica Acta</i> , 1994 , 289, 187-194	6.6	3
33	Capillary electrophoresis separation of microorganisms. <i>Methods in Molecular Biology</i> , 2008 , 384, 569-96	01.4	3
32	A new nanometrological strategy for titanium dioxide nanoparticles screening and confirmation in personal care products by CE-spICP-MS. <i>Talanta</i> , 2020 , 219, 121385	6.2	3
31	Carbon dots âl peparative techniques: Tools-objective towards green analytical nanometrology focused on bioanalysis. <i>Microchemical Journal</i> , 2021 , 161, 105773	4.8	3
30	A rapid and simple approach for the characterization and quantification of gold nanoparticles in cell culture medium by single particle-ICP-MS. <i>Journal of Analytical Atomic Spectrometry</i> , 2021 , 36, 528-534	3.7	3
29	Graphene quantum dots an efficient nanomaterial for enhancing the photostability of trans-resveratrol in food samples <i>Food Chemistry</i> , 2022 , 386, 132766	8.5	3
28	Unique evolution of vitamin A as an external pigment in tropical starlings. <i>Journal of Experimental Biology</i> , 2019 , 222,	3	2

(2021-2019)

27	Screening and Preliminary Biochemical and Biological Studies of [RuCl(-cymene)(,-bis(diphenylphosphino)-isopropylamine)][BF] in Breast Cancer Models. <i>ACS Omega</i> , 2019 , 4, 13005-13014	3.9	2
26	Simple and Rapid Screening of Total Aromatic Hydrocarbons in Polluted WaterSamples By the Flow Reversal Liquid-Liquid Extraction Technique. <i>International Journal of Environmental Analytical Chemistry</i> , 1997 , 66, 285-297	1.8	2
25	Performance testing activities for analytical assessment of supercritical fluid extractors. <i>Accreditation and Quality Assurance</i> , 2005 , 10, 219-228	0.7	2
24	Performance tests and internal quality control activities for the routine analytical use of composite electrodes. <i>Accreditation and Quality Assurance</i> , 2001 , 6, 514-520	0.7	2
23	Use of cyclodextrins for the separation of monoterpene isomers by micellar electrokinetic capillary chromatography. <i>Journal of Separation Science</i> , 2001 , 13, 293-299		2
22	Metrology in physics and chemistry. Accreditation and Quality Assurance, 2000 , 5, 206-207	0.7	2
21	Direct Determination of Nitrate and Nitrite in Soils by Use of a Hydrodynamic Injection Probe Based on Filtration-Dialysis Processes. <i>International Journal of Environmental Analytical Chemistry</i> , 1994 , 57, 279-287	1.8	2
20	Screening-confirmation strategy for nanomaterials involving spectroscopic analytical techniques and its application to the control of silver nanoparticles in pastry samples. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2021 , 246, 119015	4.4	2
19	Rapid assessment of silver nanoparticle migration from food containers into food simulants using a qualitative method. <i>Food Chemistry</i> , 2021 , 361, 130091	8.5	2
18	Rapid screening of poly(ethylene glycol) polymers by C18 column-flow injection with piezoelectric detection system. <i>Microchemical Journal</i> , 2012 , 103, 135-141	4.8	1
17	Interfacing commercially available capillary electrophoresis to sample preparation and/or detection systems to solve analytical problems. <i>Reviews in Analytical Chemistry</i> , 2014 , 33,	2.3	1
16	Development of a novel biotoxicity screening assay for analytical use. <i>Chemosphere</i> , 2009 , 76, 959-66	8.4	1
15	Computer-assisted qualimetric optimization of analytical methods. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1999 , 48, 81-90	3.8	1
14	The evolution of quality in analytical chemistry journals. <i>TrAC - Trends in Analytical Chemistry</i> , 1995 , 14, 94-100	14.6	1
13	Automatic calibration for on-line process monitoring in continuous-flow systems. <i>Journal of Automated Methods and Management in Chemistry</i> , 1995 , 17, 17-20		1
12	Design of a 3D interfacial SERS liquid sensing platform based on Au-nanobones for discrimination and quantitation of quercetin loaded nanoemulsions. <i>Sensors and Actuators B: Chemical</i> , 2022 , 358, 131	509	O
11	Cyclodextrin-modified graphene quantum dots as a novel additive for the selective separation of bioactive compounds by capillary electrophoresis. <i>Mikrochimica Acta</i> , 2021 , 188, 440	5.8	0
10	Contributions of Capillary Electrophoresis in Analytical Nanometrology: A Critical View. <i>Critical Reviews in Analytical Chemistry</i> , 2021 , 1-27	5.2	O

Special issue of âQufinica Analficaâldevoted to âAnalytical Chemistry and QualityâllAccreditation 0.7 9 and Quality Assurance, 2001, 6, 198-198 The ETACS European Project for testing the comparability of sensors and analysers: Part II. Field 0.7 tests. Accreditation and Quality Assurance, 2000, 5, 293-299 Automation and Quality in Analytical Laboratories. Journal of AOAC INTERNATIONAL, 1994, 77, 785-789 1.7 Innovative and versatile nanoplasmonic approach for the full sensing of proteinogenic aminoacids 6.2 in nutritional supplements. Talanta, 2022, 237, 122976 A view of uncertainty at the bench analytical level 1998, 152-157 5 Green Separation Techniques for-omics Platforms. Analytical Microsystems 2021, 662-689 Magnetic hybrid nanoparticles for improvements in analytical processes 2021, 637-677 3 Detection of Porphyrins in Hair Using Capillary Liquid Chromatography-Mass Spectrometry. 6.3 International Journal of Molecular Sciences, 2022, 23, 6230 Analysis of Food Additives by Capillary Electrophoresis. Current and Future Developments in Food 1

Science, 2022, 252-290