Hai-bo Shu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8008240/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Edge Structural Stability and Kinetics of Graphene Chemical Vapor Deposition Growth. ACS Nano, 2012, 6, 3243-3250.	7.3	179
2	Role of Chemical Potential in Flake Shape and Edge Properties of Monolayer MoS ₂ . Journal of Physical Chemistry C, 2015, 119, 4294-4301.	1.5	178
3	Defect Engineering in MoSe ₂ for the Hydrogen Evolution Reaction: From Point Defects to Edges. ACS Applied Materials & Interfaces, 2017, 9, 42688-42698.	4.0	171
4	The capacity fading mechanism and improvement of cycling stability in MoS ₂ -based anode materials for lithium-ion batteries. Nanoscale, 2016, 8, 2918-2926.	2.8	168
5	Intriguing electronic and optical properties of two-dimensional Janus transition metal dichalcogenides. Physical Chemistry Chemical Physics, 2018, 20, 18571-18578.	1.3	141
6	Atomic Mechanism of Electrocatalytically Active Co–N Complexes in Graphene Basal Plane for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2015, 7, 27405-27413.	4.0	139
7	Magic Carbon Clusters in the Chemical Vapor Deposition Growth of Graphene. Journal of the American Chemical Society, 2012, 134, 2970-2975.	6.6	138
8	Capture the growth kinetics of CVD growth of two-dimensional MoS2. Npj 2D Materials and Applications, 2017, 1, .	3.9	115
9	Borophene as Efficient Sulfur Hosts for Lithium–Sulfur Batteries: Suppressing Shuttle Effect and Improving Conductivity. Journal of Physical Chemistry C, 2017, 121, 15549-15555.	1.5	97
10	The Role of Intrinsic Defects in Electrocatalytic Activity of Monolayer VS ₂ Basal Planes for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2017, 121, 1530-1536.	1.5	93
11	Unveiling the Growth Mechanism of MoS ₂ with Chemical Vapor Deposition: From Two-Dimensional Planar Nucleation to Self-Seeding Nucleation. Crystal Growth and Design, 2018, 18, 1012-1019.	1.4	92
12	Layer-Dependent Dopant Stability and Magnetic Exchange Coupling of Iron-Doped MoS ₂ Nanosheets. ACS Applied Materials & Interfaces, 2015, 7, 7534-7541.	4.0	90
13	What are the active carbon species during graphene chemical vapor deposition growth?. Nanoscale, 2015, 7, 1627-1634.	2.8	89
14	Phase Separation Induced by Au Catalysts in Ternary InGaAs Nanowires. Nano Letters, 2013, 13, 643-650.	4.5	79
15	Enhanced Electrocatalytic Hydrogen Evolution from Large-Scale, Facile-Prepared, Highly Crystalline WTe ₂ Nanoribbons with Weyl Semimetallic Phase. ACS Applied Materials & Interfaces, 2018, 10, 458-467.	4.0	64
16	Is borophene a suitable anode material for sodium ion battery?. Journal of Alloys and Compounds, 2017, 704, 152-159.	2.8	62
17	First-principles study of the origin of magnetism induced by intrinsic defects in monolayer MoS2. Applied Surface Science, 2016, 361, 199-205.	3.1	61
18	Design of a silver nanoparticle for sensitive surface enhanced Raman spectroscopy detection of carmine dye. Food Chemistry, 2017, 237, 974-980.	4.2	61

#	Article	IF	CITATIONS
19	Strong intrinsic room-temperature ferromagnetism in freestanding non-van der Waals ultrathin 2D crystals. Nature Communications, 2021, 12, 5688.	5.8	61
20	Unveiling the atomic structure and electronic properties of atomically thin boron sheets on an Ag(111) surface. Nanoscale, 2016, 8, 16284-16291.	2.8	59
21	Defect Passivation and Photoluminescence Enhancement of Monolayer MoS ₂ Crystals through Sodium Halide-Assisted Chemical Vapor Deposition Growth. ACS Applied Materials & Interfaces, 2020, 12, 9563-9571.	4.0	52
22	The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects. Sensors and Actuators B: Chemical, 2018, 256, 721-728.	4.0	51
23	Design rules of heteroatom-doped graphene to achieve high performance lithium–sulfur batteries: Both strong anchoring and catalysing based on first principles calculation. Journal of Colloid and Interface Science, 2018, 529, 426-431.	5.0	50
24	Electrocatalytic Activity and Design Principles of Heteroatom-Doped Graphene Catalysts for Oxygen-Reduction Reaction. Journal of Physical Chemistry C, 2017, 121, 14434-14442.	1.5	49
25	Electrochemical Lithiation Mechanism of Two-Dimensional Transition-Metal Dichalcogenide Anode Materials: Intercalation versus Conversion Reactions. Journal of Physical Chemistry C, 2019, 123, 2139-2146.	1.5	47
26	Temperature-dependent nitrogen configuration of N-doped graphene by chemical vapor deposition. Carbon, 2015, 81, 814-820.	5.4	45
27	Invisible growth of microstructural defects in graphene chemical vapor deposition on copper foil. Carbon, 2016, 96, 237-242.	5.4	43
28	The edge termination controlled kinetics in graphene chemical vapor deposition growth. Chemical Science, 2014, 5, 4639-4645.	3.7	41
29	Fe, N co-doped graphene as a multi-functional anchor material for lithium-sulfur battery. Journal of Physics and Chemistry of Solids, 2019, 126, 280-286.	1.9	41
30	Efficient electron transfer kuramite Cu3SnS4 nanosheet thin film towards platinum-free cathode in dye-sensitized solar cells. Journal of Power Sources, 2017, 341, 60-67.	4.0	39
31	First-principles explorations of Li2S@V2CT hybrid structure as cathode material for lithium‑sulfur battery. Applied Surface Science, 2019, 489, 677-683.	3.1	39
32	Thickness-Dependent Phase Stability and Electronic Properties of GaN Nanosheets and MoS ₂ /GaN van der Waals Heterostructures. Journal of Physical Chemistry C, 2019, 123, 3861-3867.	1.5	38
33	Electronic and magnetic properties of germanene: Surface functionalization and strain effects. Solid State Communications, 2016, 226, 19-24.	0.9	36
34	2D-VN2 MXene as a novel anode material for Li, Na and K ion batteries: Insights from the first-principles calculations. Journal of Colloid and Interface Science, 2021, 593, 51-58.	5.0	35
35	Interface and polarization effects induced Schottky-barrier-free contacts in two-dimensional MXene/GaN heterojunctions. Journal of Materials Chemistry C, 2020, 8, 7350-7357.	2.7	34
36	Interface Synergistic Effect from Layered Metal Sulfides of MoS ₂ /SnS ₂ van der Waals Heterojunction with Enhanced Li-Ion Storage Performance. Journal of Physical Chemistry C, 2018, 122, 24600-24608.	1.5	32

#	Article	lF	CITATIONS
37	Hierarchical MoO ₃ /SnS ₂ core–shell nanowires with enhanced electrochemical performance for lithium-ion batteries. Physical Chemistry Chemical Physics, 2018, 20, 17171-17179.	1.3	32
38	Electron-injection driven phase transition in two-dimensional transition metal dichalcogenides. Journal of Materials Chemistry C, 2020, 8, 4432-4440.	2.7	31
39	First-Principles Study of the Doping of InAs Nanowires: Role of Surface Dangling Bonds. Journal of Physical Chemistry C, 2011, 115, 14449-14454.	1.5	30
40	Two-dimensional silicene nucleation on a Ag(111) surface: structural evolution and the role of surface diffusion. Physical Chemistry Chemical Physics, 2014, 16, 304-310.	1.3	30
41	Interface effect on electronic and optical properties of antimonene/GaAs van der Waals heterostructures. Journal of Materials Chemistry C, 2017, 5, 9687-9693.	2.7	29
42	Structural, electronic, and optical properties of hydrogenated few-layer silicene: Size and stacking effects. Journal of Applied Physics, 2013, 114, .	1.1	26
43	Doping properties of MoS 2 /ZnO (0001) heterojunction ruled by interfacial micro-structure: From first principles. Solid State Communications, 2015, 204, 67-71.	0.9	23
44	Spatial confinement of carriers and tunable band structures in InAs/InP-core–shell nanowires. Chemical Physics Letters, 2010, 495, 261-265.	1.2	22
45	Tuning the photoluminescence of large Ti3C2Tx MXene flakes. Ceramics International, 2019, 45, 11468-11474.	2.3	22
46	Structural Stability and Electronic Properties of InAs Nanowires and Nanotubes: Effects of Surface and Size. Journal of Physical Chemistry C, 2010, 114, 17514-17518.	1.5	20
47	Ultrafast nucleation and growth of high-quality monolayer MoSe ₂ crystals via vapor-liquid-solid mechanism. Nanotechnology, 2020, 31, 335601.	1.3	20
48	<i>In Situ</i> Visualization of Optoelectronic Behavior of Grain Boundaries in Monolayer WSe ₂ at the Nanoscale. Journal of Physical Chemistry C, 2021, 125, 26883-26891.	1.5	20
49	Effect of surface intrinsic defects on the structural stability and electronic properties of the all-inorganic halide perovskite CsPbI3(0 0 1) film. Chemical Physics Letters, 2019, 734, 136719.	1.2	19
50	Intrinsic Polarization-Induced Enhanced Ferromagnetism and Self-Doped p–n Junctions in CrBr ₃ /GaN van der Waals Heterostructures. ACS Applied Materials & Interfaces, 2021, 13, 8764-8773.	4.0	19
51	Theoretical and Experimental Investigations on the Growth of SnS van der Waals Epitaxies on Graphene Buffer Layer. Crystal Growth and Design, 2013, 13, 4755-4759.	1.4	18
52	Effect of Mn doping on the microstructures and dielectric properties of Bi3.15Nd0.85Ti3O12 thin films. Thin Solid Films, 2008, 516, 8240-8243.	0.8	16
53	Effect of Molecular Passivation on the Doping of InAs Nanowires. Journal of Physical Chemistry C, 2012, 116, 17928-17933.	1.5	16
54	The effect of lithium adsorption on the formation of 1T-MoS2 phase based on first-principles calculation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1767-1771.	0.9	16

#	Article	IF	CITATIONS
55	The geometric structure influence on the ferromagnetism in Carbon-doped anatase : First-principles study. Solid State Communications, 2009, 149, 1717-1721.	0.9	15
56	Role of Chemical Potential in Tuning Equilibrium Crystal Shape and Electronic Properties of Wurtzite GaAs Nanowires. Journal of Physical Chemistry C, 2013, 117, 23349-23356.	1.5	15
57	Hierarchical computational screening of layered lead-free metal halide perovskites for optoelectronic applications. Journal of Materials Chemistry A, 2021, 9, 6476-6486.	5.2	15
58	Enhancement of the accuracy of the simplified modal method for designing a subwavelength triangular grooves grating. Optics Letters, 2013, 38, 10.	1.7	14
59	Ferroelectric and dielectric properties of Nd3+â^•Zr4+ cosubstituted Bi4Ti3O12 thin films. Applied Physics Letters, 2007, 90, 102906.	1.5	13
60	Structural, electronic and magnetic properties of Ag _{<i>n</i>} Fe clusters (<i>n</i> ⩽ 15): local magnetic moment interacting with delocalized electrons. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 035102.	0.6	13
61	Tailoring electronic properties of InAs nanowires by surface functionalization. Journal of Applied Physics, 2011, 110, 103713.	1.1	13
62	Impact of Surface Point Defects on Electronic Properties and p-Type Doping of GaAs Nanowires. Journal of Physical Chemistry C, 2016, 120, 22088-22095.	1.5	13
63	Intriguing electronic structures and carrier mobilities of two-dimensional GaN nanosheets: Thickness and surface effects. Computational Materials Science, 2020, 172, 109337.	1.4	13
64	Synergistic enhancement effect of MoO3@Ag hybrid nanostructures for boosting selective detection sensitivity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 241, 118611.	2.0	13
65	Nonstoichiometry induced broadband tunable photoluminescence of monolayer WSe ₂ . Chemical Communications, 2018, 54, 743-746.	2.2	12
66	Epitaxial growth of wafer scale antioxidant single-crystal graphene on twinned Pt(111). Carbon, 2021, 181, 225-233.	5.4	12
67	Sulfur-Driven Transition from Vertical to Lateral Growth of 2D SnS–SnS ₂ Heterostructures and Their Band Alignments. Journal of Physical Chemistry C, 2020, 124, 27820-27828.	1.5	11
68	Towards ultra small noble metal nanoparticles: testing Jellium model for ligand protected copper and silver M13 core nanoparticles. Physical Chemistry Chemical Physics, 2011, 13, 3274.	1.3	10
69	Strain driven enhancement of ferroelectricity and magnetoelectric effect in multiferroic tunnel junction. Physical Chemistry Chemical Physics, 2013, 15, 14770.	1.3	10
70	Semiconducting edges and flake-shape evolution of monolayer GaSe: role of edge reconstructions. Nanoscale, 2018, 10, 12133-12140.	2.8	10
71	Heteroepitaxial growth and interface band alignment in a large-mismatch CsPbI ₃ /GaN heterojunction. Journal of Materials Chemistry C, 2022, 10, 1984-1990.	2.7	10
72	Spacer Cation Engineering of Two-Dimensional Hybrid Perovskites with Tunable Band Alignment and Optoelectronic Properties. Journal of Physical Chemistry C, 2022, 126, 8408-8416.	1.5	10

#	Article	IF	CITATIONS
73	Polarizationâ€Induced Bandâ€Alignment Transition and Nonvolatile pâ€n Junctions in 2D Van der Waals Heterostructures. Advanced Electronic Materials, 2022, 8, .	2.6	9
74	Bonding mechanism and relaxation energy of (): First-principles study. Journal of Physics and Chemistry of Solids, 2009, 70, 707-712.	1.9	8
75	Transport properties of graphene nanoribbonâ€based molecular devices. Journal of Computational Chemistry, 2011, 32, 737-741.	1.5	8
76	Vacancy effect on the doping of silicon nanowires: A first-principles study. Chinese Physics B, 2014, 23, 067304.	0.7	8
77	Crystal Phase and Facet Effects on the Structural Stability and Electronic Properties of GaP Nanowires. Journal of Physical Chemistry C, 2015, 119, 12030-12036.	1.5	8
78	Facile Preparation of Single MoS ₂ Atomic Crystals with Highly Tunable Photoluminescence by Morphology and Atomic Structure. Crystal Growth and Design, 2016, 16, 7094-7101.	1.4	8
79	First principles study on molecule doping in MoS2 monolayer. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 117101.	0.2	8
80	Thermodynamic phase diagram for hydrogen on polar InP(111)B surfaces. Journal of Applied Physics, 2010, 107, 063516.	1.1	7
81	Band structures and spatial carrier confinement in GaAs/GaP core-shell nanowires: Core/shell composition and size effects. Journal of Alloys and Compounds, 2016, 682, 571-578.	2.8	7
82	Band-offset effect on localization of carriers and p-type doping of InAs/GaAs core–shell nanowires. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1464-1468.	0.9	6
83	Crystal facet effect on structural stability and electronic properties of wurtzite InP nanowires. Journal of Applied Physics, 2014, 115, .	1.1	6
84	Intrinsic point defects in lead-free organic inorganic hybrid double perovskite (OIHDP) (MA)2KBiCl6. Organic Electronics, 2020, 81, 105668.	1.4	6
85	First-Principles Study of Initial Growth of InP Nanowires: Self-Catalytic Effect and Nucleation Mechanism of In Adatoms. Journal of Physical Chemistry C, 2010, 114, 10195-10201.	1.5	5
86	Catalytic effect and nucleation stability of Au on GaAs(111)B surface. Journal of Applied Physics, 2010, 108, 013526.	1.1	5
87	The influence of unintentional Au impurities on the doping properties of Si nanowires. Solid State Communications, 2014, 183, 8-12.	0.9	5
88	Negative electron affinity driven broadband absorption of Cs3+nPbnSb2I9+3n/GaN van der Waals heterostructures. Journal of Materials Chemistry A, 2019, 7, 22346-22352.	5.2	5
89	Rapid Wafer-Scale Growth of MoS2(1–x)Se2x Alloy Monolayers with Tunable Compositions and Optical Properties for High-Performance Photodetectors. ACS Applied Nano Materials, 0, , .	2.4	5
90	Synthesis and characterization of flower-like MoS2 microspheres by hydrothermal method. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 016102.	0.2	5

#	Article	IF	CITATIONS
91	Effects of lattice strain and ion displacement on the bonding mechanism of the ferroelectric perovskite material BaTiO3: first-principles study. Journal of Physics Condensed Matter, 2007, 19, 276213.	0.7	4
92	The finiteâ€size effect on the transport properties in edgeâ€modified graphene nanoribbonâ€based molecular devices. Journal of Computational Chemistry, 2011, 32, 1753-1759.	1.5	4
93	Intrinsic point defects in halide double perovskite Cs2NaBiCl6 insight from first-principles. Thin Solid Films, 2021, 732, 138781.	0.8	4
94	Preferential adsorption of gallium on GaAs(111)B surfaces during the initial growth of Au-assisted GaAs nanowires. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 3247-3253.	0.9	3
95	Band gap tuning in HgTe through uniaxial strains. Solid State Communications, 2013, 166, 1-5.	0.9	3
96	Evolution of morphology and microstructure of GaAs/GaSb nanowire heterostructures. Nanoscale Research Letters, 2015, 10, 108.	3.1	3
97	Interfacial structure, ferroelectric stability, and magnetoelectric effect of magnetoelectric junction FeCo/BaTiO3/FeCo with alloy electrode. Journal of Materials Science, 2016, 51, 3297-3302.	1.7	3
98	Electronic and optical properties of layered Ruddlesden Popper hybrid X2(MA)n-1SnnI3n+1 perovskite insight by first principles. Journal of Physics and Chemistry of Solids, 2020, 144, 109510.	1.9	3
99	The structural and electronic properties of amorphous HgCdTe from first-principles calculations. Journal Physics D: Applied Physics, 2014, 47, 025304.	1.3	2
100	Total absorption of WO3/WS2 stacked thin films in middle infrared light. Infrared Physics and Technology, 2019, 103, 103098.	1.3	2
101	Chemical vapor deposition growth and characterization of graphite-like film. Materials Research Express, 2020, 7, 015609.	0.8	2
102	Structural Stability and Optoelectronic Properties of Lead-Free Halide Perovskite CsSnBr3 by Introducing Transition-Metal Dopants. Journal of Electronic Materials, 0, , 1.	1.0	2
103	Quantum confinement effect on electronic and optical properties of SnS. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 067101.	0.2	1
104	Surfactant Effect of Au on Ga Adsorption on GaAs(0001) Surface. Journal of Nanoscience and Nanotechnology, 2010, 10, 7351-7354.	0.9	0
105	Effects of electrode contact on geometry structure and transport properties of the graphene-based nanomolecule Devices. , 2010, , .		0
106	Effect of Electrodes on Geometric and Transport Properties of the Graphene-Based Nanomolecular Devices. Journal of Nanoscience and Nanotechnology, 2011, 11, 10778-10781.	0.9	0
107	Ab initioinvestigation of the structural and electronic properties of amorphous HgTe. Journal of Physics Condensed Matter, 2014, 26, 045503.	0.7	0