Li Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/800810/publications.pdf Version: 2024-02-01

		393982	395343
31	1,743	19	33
papers	citations	h-index	g-index
33	33	33	2014
all docs	docs citations	times ranked	citing authors

LIMANC

#	Article	IF	CITATIONS
1	Oneâ€Step Reforming of CO ₂ and CH ₄ into Highâ€Value Liquid Chemicals and Fuels at Room Temperature by Plasmaâ€Driven Catalysis. Angewandte Chemie - International Edition, 2017, 56, 13679-13683.	7.2	244
2	A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: noble-metal catalytic method, fuel-cell method and plasma method. Catalysis Science and Technology, 2016, 6, 1593-1610.	2.1	219
3	Atmospheric Pressure and Room Temperature Synthesis of Methanol through Plasma-Catalytic Hydrogenation of CO ₂ . ACS Catalysis, 2018, 8, 90-100.	5.5	206
4	Steam reforming of toluene as biomass tar model compound in a gliding arc discharge reactor. Chemical Engineering Journal, 2017, 307, 793-802.	6.6	179
5	Hydrogenation of Carbon Dioxide to Value-Added Chemicals by Heterogeneous Catalysis and Plasma Catalysis. Catalysts, 2019, 9, 275.	1.6	116
6	NH ₃ Decomposition for H ₂ Generation: Effects of Cheap Metals and Supports on Plasma–Catalyst Synergy. ACS Catalysis, 2015, 5, 4167-4174.	5.5	103
7	Plasma driven ammonia decomposition on a Fe-catalyst: eliminating surface nitrogen poisoning. Chemical Communications, 2013, 49, 3787.	2.2	102
8	The Synthesis of Metal Phosphides: Reduction of Oxide Precursors in a Hydrogen Plasma. Angewandte Chemie - International Edition, 2008, 47, 6052-6054.	7.2	94
9	Plasmaâ€assisted ammonia decomposition over Fe–Ni alloy catalysts for CO _{<i>x</i>} â€Free hydrogen. AICHE Journal, 2019, 65, 691-701.	1.8	49
10	Safe Direct Synthesis of High Purity H ₂ O ₂ through a H ₂ /O ₂ Plasma Reaction. Angewandte Chemie - International Edition, 2013, 52, 8446-8449.	7.2	44
11	Gasâ''Liquidâ''Liquid Three-Phase Reactive Extraction for the Hydrogen Peroxide Preparation by Anthraquinone Process. Industrial & Engineering Chemistry Research, 2008, 47, 7414-7418.	1.8	34
12	Selective oxidation of CH4 to CH3OH through plasma catalysis: Insights from catalyst characterization and chemical kinetics modelling. Applied Catalysis B: Environmental, 2021, 296, 120384.	10.8	32
13	Plasma-Triggered CH ₄ /NH ₃ Coupling Reaction for Direct Synthesis of Liquid Nitrogen-Containing Organic Chemicals. ACS Omega, 2017, 2, 9199-9210.	1.6	29
14	Plasma-Catalytic Ammonia Reforming of Methane over Cu-Based Catalysts for the Production of HCN and H ₂ at Reduced Temperature. ACS Catalysis, 2021, 11, 1765-1773.	5.5	29
15	Oneâ€Step Reforming of CO ₂ and CH ₄ into Highâ€Value Liquid Chemicals and Fuels at Room Temperature by Plasmaâ€Driven Catalysis. Angewandte Chemie, 2017, 129, 13867-13871.	1.6	27
16	Highly efficient electrochemical generation of H2O2 on N/O co-modified defective carbon. International Journal of Hydrogen Energy, 2021, 46, 14277-14287.	3.8	27
17	Synergy of DBD plasma and Feâ€based catalyst in NH ₃ decomposition: Plasma enhancing adsorption step. Plasma Processes and Polymers, 2017, 14, 1600111.	1.6	26
18	Insight into the synthesis of alcohols and acids in plasma-driven conversion of CO2 and CH4 over copper-based catalysts. Applied Catalysis B: Environmental, 2022, 315, 121583.	10.8	23

LI WANG

#	Article	IF	CITATIONS
19	Pt/TS-1 Catalyst Promoted C–N Coupling Reaction in CH ₄ –NH ₃ Plasma for HCN Synthesis at Low Temperature. ACS Catalysis, 2018, 8, 10219-10224.	5.5	22
20	Plasma-enhanced direct conversion of CO ₂ to CO over oxygen-deficient Mo-doped CeO ₂ . Chemical Communications, 2020, 56, 14801-14804.	2.2	20
21	Highly Dispersed Co Nanoparticles Prepared by an Improved Method for Plasma-Driven NH3 Decomposition to Produce H2. Catalysts, 2019, 9, 107.	1.6	18
22	Inâ€Situ FTâ€IR Studies on Catalytic Nature of Iron Nitride: Identification of the N Active Site. ChemCatChem, 2012, 4, 624-627.	1.8	16
23	Preparation and properties of Pd/Ag composite membrane for direct synthesis of hydrogen peroxide from hydrogen and oxygen. Applied Catalysis B: Environmental, 2008, 79, 157-162.	10.8	14
24	Enhancing the ammonia to hydrogen (ATH) energy efficiency of alternating current arc discharge. International Journal of Hydrogen Energy, 2014, 39, 7655-7663.	3.8	13
25	Decomposition of ammonia by atmospheric pressure AC discharge: Catalytic effect of the electrodes. Catalysis Today, 2013, 211, 72-77.	2.2	12
26	Selectivity control of H2/O2 plasma reaction for direct synthesis of high purity H2O2 with desired concentration. Chemical Engineering Journal, 2017, 313, 37-46.	6.6	11
27	The promotion of Argon and water molecule on direct synthesis of H ₂ O ₂ from H ₂ and O ₂ . AICHE Journal, 2018, 64, 981-992.	1.8	7
28	Direct synthesis of hydrogen peroxide over Pd nanoparticles embedded between HZSM-5 nanosheets layers. Chinese Journal of Chemical Engineering, 2020, 28, 2577-2586.	1.7	7
29	Biogas reforming for hydrogen-rich syngas production over a Ni–K/Al2O3 catalyst using a temperature-controlled plasma reactor. International Journal of Hydrogen Energy, 2022, , .	3.8	7
30	Plasma-Catalytic Decomposition of Ammonia for Hydrogen Energy. Springer Series on Atomic, Optical, and Plasma Physics, 2019, , 181-230.	0.1	1
31	Plasma-Catalytic Conversion of Carbon Dioxide. Springer Series on Atomic, Optical, and Plasma Physics, 2019, , 271-307.	0.1	1