
Zoran Jovanović

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8007885/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of surface oxygen groups on different carbon materials by the Boehm method and temperature programmed desorption. Journal of the Serbian Chemical Society, 2011, 76, 757-768.	0.8	60
2	Characterization of potassium salts of 12-tungstophosphoric acid. Materials Research Bulletin, 2010, 45, 1679-1684.	5.2	59
3	Influence of diatomite microstructure on its adsorption capacity for Pb(II). Science of Sintering, 2009, 41, 309-317.	1.4	43
4	The role of surface chemistry in the charge storage properties of graphene oxide. Electrochimica Acta, 2017, 258, 1228-1243.	5.2	39
5	Changes of hydrogen storage properties of MgH2 induced by boron ion irradiation. International Journal of Hydrogen Energy, 2011, 36, 1184-1189.	7.1	37
6	Influence of vacant CeO2 nanostructured ceramics on MgH2 hydrogen desorption properties. Ceramics International, 2012, 38, 1181-1186.	4.8	37
7	Hydrogen storage properties of MgH2 mechanically milled with $\hat{I}\pm$ and \hat{I}^2 SiC. International Journal of Hydrogen Energy, 2011, 36, 549-554.	7.1	31
8	The effect of boron incorporation on the structure and properties of glassy carbon. Carbon, 2011, 49, 2671-2678.	10.3	30
9	Optical and dielectric properties of fluorinated ethylene propylene and tetrafluoroethylene–perfluoro(alkoxy vinyl ether) copolymer films modified by low energy N4+ and C4+ ion beams. Radiation Physics and Chemistry, 2011, 80, 1378-1385.	2.8	27
10	Strainâ€Engineered Metalâ€ŧoâ€Insulator Transition and Orbital Polarization in Nickelate Superlattices Integrated on Silicon. Advanced Materials, 2020, 32, e2004995.	21.0	24
11	Epitaxial ferroelectric oxides on silicon with perspectives for future device applications. APL Materials, 2021, 9, .	5.1	23
12	Effect of thermal treatment on the charge storage properties of graphene oxide/12-tungstophosphoric acid nanocomposite. Electrochemistry Communications, 2017, 83, 36-40.	4.7	16
13	In situ synthesis of potassium tungstophosphate supported on BEA zeolite and perspective application for pesticide removal. Journal of Environmental Sciences, 2019, 81, 136-147.	6.1	16
14	Effect of N4+ and C4+ ion beam bombardment on the optical and structural characteristics of ethylene–norbornene copolymer (TOPAS). Nuclear Instruments & Methods in Physics Research B, 2011, 269, 708-715.	1.4	15
15	Silicon Surface Deoxidation Using Strontium Oxide Deposited with the Pulsed Laser Deposition Technique. ACS Applied Materials & Interfaces, 2014, 6, 18205-18214.	8.0	15
16	Pd–Ag hydrogen diffusion cathode for alkaline water electrolysers. International Journal of Hydrogen Energy, 2011, 36, 5211-5217.	7.1	14
17	Structural modification of PdAg alloy induced by electrolytic hydrogen absorption. International Journal of Hydrogen Energy, 2011, 36, 7728-7736.	7.1	14
18	Pd–Ag hydrogen content and electrical resistivity: Temperature and pressure effect. International Journal of Hydrogen Energy, 2012, 37, 7925-7933.	7.1	12

Zoran Jovanović

#	Article	IF	CITATIONS
19	The effect of combustion chamber geometry layout on combustion and emission. Thermal Science, 2008, 12, 7-24.	1.1	12
20	Platinum-mediated healing of defective graphene produced by irradiating glassy carbon with a hydrogen ion-beam. Materials Chemistry and Physics, 2013, 141, 27-34.	4.0	11
21	Influence of surface activation on the hydrogen permeation properties of PdAg cathode membrane. International Journal of Hydrogen Energy, 2011, 36, 15364-15371.	7.1	10
22	A quick, simplified approach to the evaluation of combustion rate from an internal combustion engine indicator diagram. Thermal Science, 2008, 12, 85-102.	1.1	10
23	Modification of glassy carbon properties under low energy proton irradiation. Carbon, 2011, 49, 3737-3746.	10.3	9
24	The effect of bowl-in-piston geometry layout on fluid flow pattern. Thermal Science, 2011, 15, 817-832.	1.1	9
25	Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite. Carbon, 2020, 156, 166-178.	10.3	8
26	Integration of Single Oriented Oxide Superlattices on Silicon Using Various Template Techniques. ACS Applied Materials & Interfaces, 2020, 12, 42925-42932.	8.0	8
27	Control of SrO buffer-layer formation on Si(001) using the pulsed-laser deposition technique. RSC Advances, 2016, 6, 82150-82156.	3.6	7
28	Glassy carbon and boron doped glassy carbon electrodes for voltammetric determination of linuron herbicide in the selected samples. Open Chemistry, 2012, 10, 1271-1279.	1.9	6
29	What role does carbonized tannic acid play in energy storage composites?. Fuel, 2022, 312, 122930.	6.4	6
30	Structural and electrochemical properties of carbon ion beam irradiated 12-tungstophosphoric acid. Radiation Physics and Chemistry, 2021, 183, 109422.	2.8	4
31	The evolution of hydrogen from proton irradiated glassy carbon. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 2578-2583.	1.4	3
32	Tailoring the electrochemical charge storage properties of carbonaceous support by redox properties of heteropoly acids: where does the synergy come from?. Journal of Solid State Electrochemistry, 2019, 23, 2747-2758.	2.5	3
33	Boron ion irradiation induced structural and surface modification of glassy carbon. Nuclear Instruments & Methods in Physics Research B, 2013, 316, 17-21.	1.4	2
34	Platinum deposition from hydrogen-ion beam irradiated solid precursor. Materials Letters, 2011, 65, 2655-2657.	2.6	1
35	Hydrogen Absorption in Pd–Ag Systems: A TPD and Electrical Resistivity Study. Materials, 2019, 12, 3160.	2.9	1
36	Simultaneous heteroepitaxial growth of SrO (001) and SrO (111) during strontium-assisted deoxidation of the Si (001) surface. RSC Advances, 2020, 10, 31261-31270.	3.6	1

Zoran Jovanović

#	Article	IF	CITATIONS
37	Carbon Monolith Surface Chemistry Influence on the Silver Deposit Amount and Crystallite Size. Acta Physica Polonica A, 2011, 120, 284-288.	0.5	1
38	Mechanistic insights into ion-beam induced reduction of graphene oxide: An experimental and theoretical study. Radiation Physics and Chemistry, 2022, 199, 110355.	2.8	1
39	Liquid crystal aligning using different approaches. Journal of Physics: Conference Series, 2020, 1560, 012040.	0.4	0
40	Silver deposition on chemically treated carbon monolith. Hemijska Industrija, 2009, 63, 195-200.	0.7	0
41	Changes of structural and hydrogen desorption properties of MgH2 indused by ion irradiation. Hemijska Industrija, 2010, 64, 227-232.	0.7	0
42	Analysis of surface oxygen groups of thermally reduced graphene oxide via temperature programmed desorption method. Tehnika, 2018, 73, 186-191.	0.2	0
43	Electrochemical properties of composites of graphene-oxide and cobalt-ferrite doped with zink and gallium. Tehnika, 2022, 77, 155-162.	0.2	0