
Reinoud J Gaymans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8007597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CO2 permeation properties of poly(ethylene oxide)-based segmented block copolymers. Journal of Membrane Science, 2010, 346, 194-201.	8.2	78
2	Segmented copolymers with monodisperse crystallizable hard segments: Novel semi-crystalline materials. Progress in Polymer Science, 2011, 36, 713-748.	24.7	75
3	Polyurethane elastomers with amide chain extenders of uniform length. Polymer, 2006, 47, 1091-1100.	3.8	66
4	Tuning of mass transport properties of multi-block copolymers for CO2 capture applications. Journal of Membrane Science, 2010, 359, 54-63.	8.2	66
5	Nylon 6 polymerization in the solid state. Journal of Applied Polymer Science, 1982, 27, 2513-2526.	2.6	60
6	Segmented block copolymers based on poly(propylene oxide) and monodisperse polyamide-6,T segments. Journal of Polymer Science Part A, 2006, 44, 4769-4781.	2.3	54
7	Subambient Temperature CO ₂ and Light Gas Permeation Through Segmented Block Copolymers with Tailored Soft Phase. ACS Applied Materials & Interfaces, 2010, 2, 551-560.	8.0	51
8	Crystalline morphologies in segmented copolymers with hard segments of uniform length. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 1783-1792.	2.1	43
9	Hydrophilic segmented block copolymers based on poly(ethylene oxide) and monodisperse amide segments. Journal of Polymer Science Part A, 2007, 45, 4522-4535.	2.3	41
10	Influence of morphology on the properties of segmented block copolymers. Polymer, 2007, 48, 1998-2006.	3.8	39
11	Structure-property relations of poly(propylene oxide) block copolymers with monodisperse and polydisperse crystallisable segments. Polymer, 2005, 46, 9243-9256.	3.8	35
12	Elastic behavior of flexible polyether(urethane–urea) foam materials. Polymer, 2004, 45, 2721-2727.	3.8	31
13	Impregnation of glass rovings with a polyamide melt. Part 1: Impregnation bath. Composites Manufacturing, 1993, 4, 85-92.	0.2	30
14	Elastic properties of thermoplastic elastomers based on poly(tetramethylene oxide) and monodisperse amide segments. Journal of Materials Science, 2010, 45, 158-167.	3.7	25
15	Segmented Block Copolymers with Monodisperse Aramide Endâ€Segments. Macromolecular Chemistry and Physics, 2008, 209, 854-863.	2.2	24
16	Comments on â€~Percolation model for brittle-tough transition in nylon/rubber blends'. Polymer, 1990, 31, 971.	3.8	23
17	Structure and Properties of Monoâ€, Diâ€, Tri―and Multiblock Segmented Copolymers with Diamide Hard Segments. Macromolecular Chemistry and Physics, 2009, 210, 48-59.	2.2	22
18	Influence of chemical crosslinks on the elastic behavior of segmented block copolymers. Polymer, 2005, 46, 6862-6868.	3.8	19

REINOUD J GAYMANS

#	Article	IF	CITATIONS
19	Polyurethane tri-block copolymers-Synthesis, mechanical, elastic, and rheological properties. Polymer Engineering and Science, 2010, 50, 747-755.	3.1	19
20	The melt rheological behavior of AB, ABA, BAB, and (AB) _{<i>n</i>} block copolymers with monodisperse aramide segments. Polymer Engineering and Science, 2010, 50, 756-761.	3.1	17
21	Segmented Block Copolymers with Terephthalicâ€Extended Poly(ethylene oxide) Segments. Macromolecular Chemistry and Physics, 2008, 209, 525-534.	2.2	16
22	Synthesis and characterization of bisester-amide segments of uniform and random length. Polymer, 2005, 46, 4584-4595.	3.8	15
23	Thermoplastic Polyurethanes with TDIâ€Based Monodisperse Hard Segments. Macromolecular Materials and Engineering, 2009, 294, 405-413.	3.6	15
24	Segmented Block Copolymers with Monodisperse Hard Segments: The Influence of Hâ€Bonding on Various Properties. Macromolecular Materials and Engineering, 2009, 294, 492-501.	3.6	15
25	Structure–property relations of segmented block copolymers with liquid–liquid demixed morphologies. Polymer, 2005, 46, 3616-3627.	3.8	14
26	Crystallization of poly(ethylene terephthalate) modified with codiols. Journal of Applied Polymer Science, 2001, 80, 2676-2682.	2.6	13
27	The Structure of Water in PEOâ€Based Segmented Block Copolymers and its Effect on Transition Temperatures. Macromolecular Chemistry and Physics, 2008, 209, 967-979.	2.2	13
28	Crystallization of poly(ethylene terephthalate) and poly (butylene terephthalate) modified by diamides. Polymer Engineering and Science, 2001, 41, 466-474.	3.1	12
29	Polyether-amide segmented copolymers based on ethylene terephthalamide units of uniform length. Journal of Applied Polymer Science, 2001, 80, 1173-1180.	2.6	12
30	Morphology of Alternating Poly(ester amide)s Based on 1,4-Butylene Established by13C Solid-State NMR Relaxation Measurements. Macromolecules, 2002, 35, 8013-8019.	4.8	11
31	Synthesis and properties of poly(sulfone-arylate) copolymers. Journal of Polymer Science Part A, 2009, 47, 3904-3913.	2.3	11
32	Aliphatic Polyamides. , 1989, , 357-373.		10
33	Synthesis of polyether-based block copolymers based on poly(propylene oxide) and terephthalates. Polymer, 2005, 46, 327-333.	3.8	10
34	Polyurethane triblock copolymers with monoâ€disperse hard segments. Influence of the hard segment length on thermal and thermomechanical properties. Polymer Engineering and Science, 2008, 48, 1222-1230.	3.1	10
35	Tensile and elastic properties of triblock copolymer based on aramide endâ€segments and polyether midâ€segments. Journal of Applied Polymer Science, 2009, 111, 1780-1785.	2.6	10
36	Modifying an amorphous polymer to a fast crystallizing semi rystalline material by copolymerization with monodisperse amide segments. Journal of Polymer Science Part A, 2010, 48, 63-73.	2.3	10

REINOUD J GAYMANS

#	Article	IF	CITATIONS
37	Ruthenium tetroxide staining of polybutylene terephthalate (PBT) and polyisobutylene-b-PBT segmented block copolymers. Polymer, 1992, 33, 3522-3524.	3.8	9
38	Melt rheological behavior of a triblock copolymer based on aramide end-segments. Journal of Applied Polymer Science, 2009, 112, 2663-2668.	2.6	8
39	Synthesis and properties of segmented block copolymers based on mixtures of poly(ethylene oxide) and poly(tetramethylene oxide) segments. European Polymer Journal, 2008, 44, 130-143.	5.4	7
40	Polyurethanes with Narrow―and Polydisperse Hard Segment Distributions. Macromolecular Materials and Engineering, 2008, 293, 887-894.	3.6	6
41	Impregnation of glass rovings with a polyamide melt. Part 2: Wipe-off die. Composites Manufacturing, 1993, 4, 133-137.	0.2	5
42	Thermoplastic Polyurethanes with Poly(butylene terephthalate) as Crystallizable Hard Phase. Macromolecular Materials and Engineering, 2008, 293, 228-234.	3.6	5
43	Enhancing the drawability of a polyester by copolymerization with a second type of crystallizable block. Journal of Applied Polymer Science, 2011, 119, 23-30.	2.6	5
44	Synthesis and properties of segmented copolymers of polyphenylene ether and tetra-amide units. Macromolecular Symposia, 2003, 199, 135-146.	0.7	1