Ian R Gould

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8007563/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamics of Bimolecular Photoinduced Electron-Transfer Reactions. Accounts of Chemical Research, 1996, 29, 522-528.	15.6	321
2	Nucleophile-Assisted Cleavage of Benzyltrialkylsilane Cation Radicals. Journal of the American Chemical Society, 1997, 119, 1876-1883.	13.7	117
3	Kinetics of Reductive Nâ^'O Bond Fragmentation:Â The Role of a Conical Intersection. Journal of the American Chemical Society, 2002, 124, 15225-15238.	13.7	83
4	Efficient photoinduced generation of radical cations in solvents of medium and low polarity. Journal of the American Chemical Society, 1991, 113, 3601-3602.	13.7	82
5	Intersystem Crossing in Charge-Transfer Excited Statesâ€. Journal of Physical Chemistry A, 2003, 107, 3515-3524.	2.5	67
6	Organic functional group transformations in water at elevated temperature and pressure: Reversibility, reactivity, and mechanisms. Geochimica Et Cosmochimica Acta, 2013, 104, 194-209.	3.9	42
7	The central role of ketones in reversible and irreversible hydrothermal organic functional group transformations. Geochimica Et Cosmochimica Acta, 2012, 98, 48-65.	3.9	38
8	Kinetics and Mechanisms of Dehydration of Secondary Alcohols Under Hydrothermal Conditions. ACS Earth and Space Chemistry, 2018, 2, 821-832.	2.7	36
9	Barrierless Electron Transfer Bond Fragmentation Reactions. Journal of the American Chemical Society, 2004, 126, 14071-14078.	13.7	34
10	Resonance Raman analysis of charge-transfer reorganization energies in a covalent dicyanoethylene-aza-adamantane. Chemical Physics Letters, 1996, 258, 87-93.	2.6	30
11	Relating motivation and student outcomes in general organic chemistry. Chemistry Education Research and Practice, 2018, 19, 331-341.	2.5	28
12	Sphalerite is a geochemical catalyst for carbonâ^'hydrogen bond activation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11642-11645.	7.1	27
13	Radiationless Decay in Exciplexes with Variable Charge Transferâ€. Journal of Physical Chemistry B, 2007, 111, 6782-6787.	2.6	25
14	Deamination reaction mechanisms of protonated amines under hydrothermal conditions. Geochimica Et Cosmochimica Acta, 2019, 244, 113-128.	3.9	24
15	A Curve-Crossing Model for Oxidative Decarboxylation. Kinetics of Anilino Carboxylate Fragmentations. Journal of Physical Chemistry A, 2004, 108, 10949-10956.	2.5	23
16	Organic Oxidations Using Geomimicry. Journal of Organic Chemistry, 2015, 80, 12159-12165.	3.2	21
17	Effects of iron-containing minerals on hydrothermal reactions of ketones. Geochimica Et Cosmochimica Acta, 2018, 223, 107-126.	3.9	21
18	Photochemical Electron Transfer Initiated Oxidative Fragmentation of Aminopinacols. Factors Governing Reaction Rates and Quantum Efficiencies of C-C Bond Cleavage. The Journal of Physical Chemistry, 1995, 99, 3566-3573.	2.9	20

Ian R Gould

#	Article	lF	CITATIONS
19	Mechanisms of decarboxylation of phenylacetic acids and their sodium salts in water at high temperature and pressure. Geochimica Et Cosmochimica Acta, 2020, 269, 597-621.	3.9	20
20	Hydrothermal Photochemistry as a Mechanistic Tool in Organic Geochemistry: The Chemistry of Dibenzyl Ketone. Journal of Organic Chemistry, 2014, 79, 7861-7871.	3.2	19
21	Production of Carboxylic Acids from Aldehydes under Hydrothermal Conditions: A Kinetics Study of Benzaldehyde. ACS Earth and Space Chemistry, 2019, 3, 170-191.	2.7	18
22	Aminosilanes as two-electron donors: A technological application of radical cation chemistry. Canadian Journal of Chemistry, 2003, 81, 777-788.	1.1	16
23	Measuring student performance in general organic chemistry. Chemistry Education Research and Practice, 2015, 16, 168-178.	2.5	16
24	Mineral-assisted production of benzene under hydrothermal conditions: Insights from experimental studies on C 6 cyclic hydrocarbons. Journal of Volcanology and Geothermal Research, 2017, 346, 21-27.	2.1	14
25	Selective hydrothermal reductions using geomimicry. Green Chemistry, 2019, 21, 4159-4168.	9.0	11
26	Quantifying the extent of amide and peptide bond synthesis across conditions relevant to geologic and planetary environments. Geochimica Et Cosmochimica Acta, 2021, 300, 318-332.	3.9	11
27	Metastable equilibrium of substitution reactions among oxygen- and nitrogen-bearing organic compounds at hydrothermal conditions. Geochimica Et Cosmochimica Acta, 2020, 272, 93-104.	3.9	7
28	Kinetics and Mechanisms of Hydrothermal Ketonic Decarboxylation. ACS Earth and Space Chemistry, 2020, 4, 2082-2095.	2.7	6
29	Earth as Organic Chemist. , 2019, , 415-446.		5
30	Understanding the Solvent Contribution to Chemical Reaction Barriers. Journal of Physical Chemistry A, 2019, 123, 10490-10499.	2.5	4
31	Hydrothermal Experiments with Protonated Benzylamines Provide Predictions of Temperature-Dependent Deamination Rates for Geochemical Modeling. ACS Earth and Space Chemistry, 2021, 5, 1997-2012.	2.7	4
32	Hydrothermal One-Electron Oxidation of Carboxylic Acids in the Presence of Iron Oxide Minerals. ACS Earth and Space Chemistry, 2021, 5, 2715-2728.	2.7	4
33	Kinetic Determinations of Accurate Relative Oxidation Potentials of Amines with Reactive Radical Cationsâ€. Photochemistry and Photobiology, 2006, 82, 104.	2.5	3
34	Bulk gold catalyzes hydride transfer in the Cannizzaro and related reactions. New Journal of Chemistry, 2019, 43, 19137-19148.	2.8	2
35	Resonance Raman studies of phenylcyclopropane radical cations. Journal of Raman Spectroscopy, 2000, 31, 233-241.	2.5	1
36	Resonance Raman studies of phenylcyclopropane radical cations. Journal of Raman Spectroscopy, 2000. 31. 233-241.	2.5	1