Guangcan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8007562/publications.pdf

Version: 2024-02-01

567144 752573 20 607 15 20 citations h-index g-index papers 20 20 20 421 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Epigallocatechin gallate-based nanoparticles with reactive oxygen species scavenging property for effective chronic periodontitis treatment. Chemical Engineering Journal, 2022, 433, 132197.	6.6	40
2	Size Changeable Nanomedicines Assembled by Noncovalent Interactions of Responsive Small Molecules for Enhancing Tumor Therapy. ACS Applied Materials & Interfaces, 2022, 14, 26431-26442.	4.0	18
3	Green tea polyphenol nanoparticle as a novel adsorbent to remove Pb2+ from wastewater. Materials Letters, 2021, 284, 128986.	1.3	7
4	Green Tea Polyphenol-Stabilized Gel-Like High Internal Phase Pickering Emulsions. ACS Sustainable Chemistry and Engineering, 2021, 9, 4076-4090.	3.2	49
5	Biocompatible, Antioxidant Nanoparticles Prepared from Natural Renewable Tea Polyphenols and Human Hair Keratins for Cell Protection and Anti-inflammation. ACS Biomaterials Science and Engineering, 2021, 7, 1046-1057.	2.6	32
6	Polyphenol Nanoparticles from Commonly Consumed Tea for Scavenging Free Radicals, Stabilizing Pickering Emulsions, and Inhibiting Cancer Cells. ACS Applied Nano Materials, 2021, 4, 652-665.	2.4	26
7	Polymerization-Induced Self-Assembly of Tea Polyphenols into Open-Mouthed Nanoparticles for Active Delivery Systems and Stable Carbon Bowls. ACS Applied Nano Materials, 2021, 4, 13510-13522.	2.4	13
8	Synthesis and characterization of injectable self-healing hydrogels based on oxidized alginate-hybrid-hydroxyapatite nanoparticles and carboxymethyl chitosan. International Journal of Biological Macromolecules, 2020, 165, 1164-1174.	3.6	47
9	Carrier-Enhanced Photodynamic Cancer Therapy of Self-Assembled Green Tea Polyphenol-Based Nanoformulations. ACS Sustainable Chemistry and Engineering, 2020, 8, 16372-16384.	3.2	28
10	Micro-/Nanomechanics Dependence of Biomimetic Matrices upon Collagen-Based Fibrillar Aggregation and Arrangement. Biomacromolecules, 2020, 21, 3547-3560.	2.6	12
11	General Nanomedicine Platform by Solvent-Mediated Disassembly/Reassembly of Scalable Natural Polyphenol Colloidal Spheres. ACS Applied Materials & Samp; Interfaces, 2020, 12, 37914-37928.	4.0	25
12	Natural polysaccharide-incorporated hydroxyapatite as size-changeable, nuclear-targeted nanocarrier for efficient cancer therapy. Biomaterials Science, 2020, 8, 5390-5401.	2.6	20
13	Modular Assembly of Versatile Nanoparticles with Epigallocatechin Gallate. ACS Sustainable Chemistry and Engineering, 2020, 8, 9833-9845.	3.2	35
14	Preparation of Strong Antioxidative, Therapeutic Nanoparticles Based on Amino Acid-Induced Ultrafast Assembly of Tea Polyphenols. ACS Applied Materials & Samp; Interfaces, 2020, 12, 33550-33563.	4.0	76
15	Alginate-Assisted Mineralization of Collagen by Collagen Reconstitution and Calcium Phosphate Formation. ACS Biomaterials Science and Engineering, 2020, 6, 3275-3286.	2.6	22
16	DOX-assisted functionalization of green tea polyphenol nanoparticles for effective chemo-photothermal cancer therapy. Journal of Materials Chemistry B, 2019, 7, 4066-4078.	2.9	43
17	Freeze–thaw cycles for biocompatible, mechanically robust scaffolds of human hair keratins. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1452-1461.	1.6	15
18	Delicate Assembly of Ultrathin Hydroxyapatite Nanobelts with Nanoneedles Directed by Dissolved Cellulose. Inorganic Chemistry, 2018, 57, 4516-4523.	1.9	22

#	Article	IF	CITATIONS
19	Size-controlled, colloidally stable and functional nanoparticles based on the molecular assembly of green tea polyphenols and keratins for cancer therapy. Journal of Materials Chemistry B, 2018, 6, 1373-1386.	2.9	56
20	RhBMP-2 and concomitant rapid material degradation synergistically promote bone repair and regeneration with collagen–hydroxyapatite nanocomposites. Journal of Materials Chemistry B, 2018, 6, 4338-4350.	2.9	21