SÃ;ndor B Ã-tvös

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/800743/publications.pdf Version: 2024-02-01

SÃ:ΝΟΟΡ Β Ã_ΤΛöS

#	Article	IF	CITATIONS
1	Strategic Application of Residence-Time Control in Continuous-Flow Reactors. ChemistryOpen, 2015, 4, 212-223.	1.9	67
2	Highly Efficient 1,4â€Addition of Aldehydes to Nitroolefins: Organocatalysis in Continuous Flow by Solidâ€Supported Peptidic Catalysts. ChemSusChem, 2012, 5, 266-269.	6.8	65
3	Continuous flow asymmetric synthesis of chiral active pharmaceutical ingredients and their advanced intermediates. Green Chemistry, 2021, 23, 6117-6138.	9.0	62
4	Multigram-scale flow synthesis of the chiral key intermediate of (â^)-paroxetine enabled by solvent-free heterogeneous organocatalysis. Chemical Science, 2019, 10, 11141-11146.	7.4	56
5	Alkyne–Azide Cycloadditions with Copper Powder in a Highâ€Pressure Continuousâ€Flow Reactor: Highâ€Temperature Conditions versus the Role of Additives. Chemistry - an Asian Journal, 2013, 8, 800-808.	3.3	49
6	Continuousâ€Flow Solidâ€Phase Peptide Synthesis: A Revolutionary Reduction of the Amino Acid Excess. ChemSusChem, 2014, 7, 3172-3176.	6.8	47
7	Telescoped Continuous Flow Synthesis of Optically Active Î ³ -Nitrobutyric Acids as Key Intermediates of Baclofen, Phenibut, and Fluorophenibut. Organic Letters, 2020, 22, 8122-8126.	4.6	45
8	Asymmetric aldol reaction in a continuous-flow reactor catalyzed by a highly reusable heterogeneous peptide. Journal of Catalysis, 2012, 295, 179-185.	6.2	44
9	Flow chemistry as a versatile tool for the synthesis of triazoles. Catalysis Science and Technology, 2015, 5, 4926-4941.	4.1	44
10	Harnessing the Versatility of Continuous-Flow Processes: Selective and Efficient Reactions. Chemical Record, 2016, 16, 1018-1033.	5.8	41
11	Highly Selective Continuousâ€Flow Synthesis of Potentially Bioactive Deuterated Chalcone Derivatives. ChemPlusChem, 2015, 80, 859-864.	2.8	32
12	A High‥ielding Synthesis of EIDDâ€⊋801 from Uridine**. European Journal of Organic Chemistry, 2020, 2020, 6736-6739.	2.4	29
13	Efficient continuous-flow synthesis of novel 1,2,3-triazole-substituted β-aminocyclohexanecarboxylic acid derivatives with gram-scale production. Beilstein Journal of Organic Chemistry, 2013, 9, 1508-1516.	2.2	28
14	Heterogeneous Dipeptideâ€Catalyzed αâ€Amination of Aldehydes in a Continuousâ€Flow Reactor: Effect of Residence Time on Enantioselectivity. Advanced Synthesis and Catalysis, 2015, 357, 3671-3680.	4.3	27
15	Stereoselective syntheses and transformations of chiral 1,3-aminoalcohols and 1,3-diols derived from nopinone. Tetrahedron: Asymmetry, 2014, 25, 1138-1145.	1.8	25
16	Continuous-flow oxidative homocouplings without auxiliary substances: Exploiting a solid base catalyst. Journal of Catalysis, 2017, 348, 90-99.	6.2	24
17	Exploring New Parameter Spaces for the Oxidative Homocoupling of Aniline Derivatives: Sustainable Synthesis of Azobenzenes in a Flow System. ACS Sustainable Chemistry and Engineering, 2015, 3, 3388-3397.	6.7	23
18	A layered double hydroxide, a synthetically useful heterogeneous catalyst for azideâ^'alkyne cycloadditions in a continuous-flow reactor. Applied Catalysis A: General, 2015, 501, 63-73.	4.3	22

SÃindor B Ã-tvös

#	Article	IF	CITATIONS
19	Continuous-Flow Synthesis of Deuterium-Labeled Antidiabetic Chalcones: Studies towards the Selective Deuteration of the Alkynone Core. Molecules, 2016, 21, 318.	3.8	22
20	Highly selective deuteration of pharmaceutically relevant nitrogen-containing heterocycles: a flow chemistry approach. Molecular Diversity, 2011, 15, 605-611.	3.9	21
21	Continuous flow heterogeneous catalytic reductive aminations under aqueous micellar conditions enabled by an oscillatory plug flow reactor. Green Chemistry, 2021, 23, 5625-5632.	9.0	19
22	Enantioselective Flow Synthesis of Rolipram Enabled by a Telescoped Asymmetric Conjugate Addition–Oxidative Aldehyde Esterification Sequence Using <i>in Situ</i> -Generated Persulfuric Acid as Oxidant. Organic Letters, 2022, 24, 1066-1071.	4.6	19
23	Catalytic use of layered materials for fine chemical syntheses. Catalysis Science and Technology, 2019, 9, 47-60.	4.1	17
24	Continuous-flow azide–alkyne cycloadditions with an effective bimetallic catalyst and a simple scavenger system. RSC Advances, 2014, 4, 46666-46674.	3.6	16
25	Controlled Transformations of Aryl Halides in a Flow System: Selective Synthesis of Aryl Azides and Aniline Derivatives. Advanced Synthesis and Catalysis, 2018, 360, 1841-1849.	4.3	16
26	A mineralogically-inspired silver–bismuth hybrid material: an efficient heterogeneous catalyst for the direct synthesis of nitriles from terminal alkynes. Green Chemistry, 2018, 20, 1007-1019.	9.0	16
27	Continuous-flow synthesis of 3,5-disubstituted pyrazoles <i>via</i> sequential alkyne homocoupling and Cope-type hydroamination. RSC Advances, 2019, 9, 8197-8203.	3.6	15
28	Sustainable Aldehyde Oxidations in Continuous Flow Using <i>in Situ</i> -Generated Performic Acid. ACS Sustainable Chemistry and Engineering, 2021, 9, 5519-5525.	6.7	15
29	Bismuth(III)-Catalyzed Hydration of Terminal Alkynes: Sustainable Synthesis of Methyl Ketones in Batch and Flow. ACS Sustainable Chemistry and Engineering, 2019, 7, 13286-13293.	6.7	13
30	Continuousâ€Flow Amide and Ester Reductions Using Neat Borane Dimethylsulfide Complex. ChemSusChem, 2020, 13, 1800-1807.	6.8	13
31	Continuousâ€Flow Hydrogenation and Reductive Deuteration of Nitriles: a Simple Access to α,αâ€Đideutero Amines. ChemPlusChem, 2019, 84, 1508-1511.	2.8	11
32	Synthesis and Spectroscopic and Computational Characterization of Zn ₄ O(Alicyclic or) Tj ETQq0 0 2010, 49, 4620-4625.	0 rgBT /O 4.0	verlock 10 Tf 10
33	Pharmacokinetics-Driven Evaluation of the Antioxidant Activity of Curcuminoids and Their Major Reduced Metabolites—A Medicinal Chemistry Approach. Molecules, 2021, 26, 3542.	3.8	10
34	<i>N</i> â€Hydroxyphthalimide Catalyzed Aerobic Oxidation of Aldehydes under Continuous Flow Conditions. Advanced Synthesis and Catalysis, 2022, 364, 1998-2008.	4.3	9
35	Exploiting a silver–bismuth hybrid material as heterogeneous noble metal catalyst for decarboxylations and decarboxylative deuterations of carboxylic acids under batch and continuous flow conditions. Green Chemistry, 2021, 23, 4685-4696.	9.0	7
36	Copper-Loaded Layered Bismuth Subcarbonate—Efficient Multifunctional Heterogeneous Catalyst for Concerted C–S/C–N Heterocyclization, ACS Applied Materials & amp: Interfaces, 2021, 13, 42650-42661	8.0	5

SÃindor B Ã-tvös

#	Article	IF	CITATIONS
37	Less Cytotoxic Protoflavones as Antiviral Agents: Protoapigenone 1′-O-isopropyl ether Shows Improved Selectivity Against the Epstein–Barr Virus Lytic Cycle. International Journal of Molecular Sciences, 2019, 20, 6269.	4.1	4
38	Synthesis of Nontoxic Protoflavone Derivatives through Selective Continuousâ€Flow Hydrogenation of the Flavonoid Bâ€Ring. ChemPlusChem, 2018, 83, 72-76.	2.8	3
39	A mineralogically-inspired silver–bismuth hybrid material: Structure, stability and application for catalytic benzyl alcohol dehydrogenations under continuous flow conditions. Molecular Catalysis, 2020, 498, 111263.	2.0	3
40	Potential solvents in coupling reactions catalyzed by Cu(II)Fe(III)-layered double hydroxide in a continuous-flow reactor. Reaction Kinetics, Mechanisms and Catalysis, 2017, 121, 345-351.	1.7	2
41	Bismuth Subnitrate-Catalyzed Markovnikov-Type Alkyne Hydrations under Batch and Continuous Flow Conditions. Molecules, 2021, 26, 2864.	3.8	2
42	6. Experimental procedures for conducting organic reactions in continuous flow. , 2014, , 157-190.		0
43	Synthesis of Nontoxic Protoflavone Derivatives through Selective Continuous-Flow Hydrogenation of the Flavonoid B-Ring. ChemPlusChem, 2018, 83, 71-71.	2.8	0
44	Continuous-Flow Catalysis. Catalysts, 2021, 11, 1066.	3.5	0