Huacheng Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8006565/publications.pdf

Version: 2024-02-01

78 papers

3,732 citations

34 h-index 58 g-index

78 all docs 78 docs citations

78 times ranked 2876 citing authors

#	Article	IF	CITATIONS
1	Insights into extracellular polymeric substances ofÂcyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis. Water Research, 2013, 47, 2005-2014.	5.3	251
2	Effect of Fe–N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution. Bioresource Technology, 2021, 325, 124732.	4.8	198
3	Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters. Water Research, 2017, 117, 115-126.	5.3	187
4	Combination of two-dimensional correlation spectroscopy and parallel factor analysis to characterize the binding of heavy metals with DOM in lake sediments. Journal of Hazardous Materials, 2013, 263, 412-421.	6.5	155
5	Magnetic particles modification of coconut shell-derived activated carbon and biochar for effective removal of phenol from water. Chemosphere, 2018, 211, 962-969.	4.2	155
6	Biochar as simultaneous shelter, adsorbent, pH buffer, and substrate of Pseudomonas citronellolis to promote biodegradation of high concentrations of phenol in wastewater. Water Research, 2020, 172, 115494.	5. 3	151
7	Recovery of phosphorus as struvite from sewage sludge ash. Journal of Environmental Sciences, 2012, 24, 1533-1538.	3.2	137
8	Investigation on extracellular polymeric substances from mucilaginous cyanobacterial blooms in eutrophic freshwater lakes. Chemosphere, 2013, 93, 75-81.	4.2	106
9	Novel Precipitated Zirconia-Based DGT Technique for High-Resolution Imaging of Oxyanions in Waters and Sediments. Environmental Science & Environmenta	4.6	105
10	Molecular weight-dependent spectral and metal binding properties of sediment dissolved organic matter from different origins. Science of the Total Environment, 2019, 665, 828-835.	3.9	102
11	Intriguing changes in molecular size and composition of dissolved organic matter induced by microbial degradation and self-assembly. Water Research, 2018, 135, 187-194.	5.3	93
12	Towards understanding the role of extracellular polymeric substances in cyanobacterial Microcystis aggregation and mucilaginous bloom formation. Chemosphere, 2014, 117, 815-822.	4.2	89
13	UV-induced photochemical heterogeneity of dissolved and attached organic matter associated with cyanobacterial bloomsÂinÂa eutrophic freshwater lake. Water Research, 2013, 47, 6506-6515.	5. 3	86
14	Toward Quantitative Understanding of the Bioavailability of Dissolved Organic Matter in Freshwater Lake during Cyanobacteria Blooming. Environmental Science & Environmental Science & 2017, 51, 6018-6026.	4.6	85
15	Effect of carbonization methods on the properties of tea waste biochars and their application in tetracycline removal from aqueous solutions. Chemosphere, 2021, 267, 129283.	4.2	80
16	Improved adsorption properties of tetracycline on KOH/KMnO4 modified biochar derived from wheat straw. Chemosphere, 2022, 296, 133981.	4.2	74
17	Dissolved organic matter binding with Pb(II) as characterized by differential spectra and 2D UV–FTIR heterospectral correlation analysis. Water Research, 2018, 144, 435-443.	5.3	73
18	Contrasting effects of photochemical and microbial degradation on Cu(II) binding with fluorescent DOM from different origins. Environmental Pollution, 2018, 239, 205-214.	3.7	70

#	Article	IF	Citations
19	Molecular weight-dependent adsorption fractionation of natural organic matter on ferrihydrite colloids in aquatic environment. Chemical Engineering Journal, 2019, 363, 356-364.	6.6	63
20	High cadmium pollution from sediments in a eutrophic lake caused by dissolved organic matter complexation and reduction of manganese oxide. Water Research, 2021, 190, 116711.	5.3	61
21	Electrolyte Cations Binding with Extracellular Polymeric Substances Enhanced <i>Microcystis</i> Aggregation: Implication for <i>Microcystis</i> Bloom Formation in Eutrophic Freshwater Lakes. Environmental Science & Environmental Science & Environme	4.6	60
22	Depth-dependent variations of sedimentary dissolved organic matter composition in a eutrophic lake: Implications for lake restoration. Chemosphere, 2016, 145, 551-559.	4.2	59
23	Characterization, origin and aggregation behavior of colloids in eutrophic shallow lake. Water Research, 2018, 142, 176-186.	5.3	58
24	Heterogeneity in metal binding by individual fluorescent components in a eutrophic algae-rich lake. Ecotoxicology and Environmental Safety, 2013, 98, 266-272.	2.9	56
25	Development of a sediment microbial fuel cell-based biosensor for simultaneous online monitoring of dissolved oxygen concentrations along various depths in lake water. Science of the Total Environment, 2019, 673, 272-280.	3.9	53
26	Enhanced anaerobic digestion and sludge dewaterability by alkaline pretreatment and its mechanism. Journal of Environmental Sciences, 2012, 24, 1731-1738.	3.2	48
27	High-resolution measurement and mapping of tungstate in waters, soils and sediments using the low-disturbance DGT sampling technique. Journal of Hazardous Materials, 2016, 316, 69-76.	6.5	48
28	Nitrogen Transformation during Pyrolysis of Various N-Containing Biowastes with Participation of Mineral Calcium. ACS Sustainable Chemistry and Engineering, 2020, 8, 12197-12207.	3.2	48
29	Effects of cyanobacterial extracellular polymeric substances on the stability of ZnO nanoparticles in eutrophic shallow lakes. Environmental Pollution, 2015, 197, 231-239.	3.7	41
30	Variations in size and composition of colloidal organic matter in a negative freshwater estuary. Science of the Total Environment, 2018, 615, 931-941.	3.9	40
31	Effects of ultrasonic pretreatment on sludge dewaterability and extracellular polymeric substances distribution in mesophilic anaerobic digestion. Journal of Environmental Sciences, 2010, 22, 474-480.	3.2	39
32	Algal bloom sedimentation induces variable control of lake eutrophication by phosphorus inactivating agents. Science of the Total Environment, 2016, 557-558, 479-488.	3.9	39
33	Extracellular polymeric substances facilitate the biosorption of phenanthrene on cyanobacteria Microcystis aeruginosa. Chemosphere, 2016, 162, 172-180.	4.2	39
34	The composition difference of macrophyte litter-derived dissolved organic matter by photodegradation and biodegradation: Role of reactive oxygen species on refractory component. Chemosphere, 2020, 242, 125155.	4.2	37
35	Effect of ultrasonic pretreatment on anaerobic digestion and its sludge dewaterability. Journal of Environmental Sciences, 2011, 23, 1472-1478.	3.2	35
36	Dynamic molecular size transformation of aquatic colloidal organic matter as a function of pH and cations. Water Research, 2018, 144, 543-552.	5.3	35

#	Article	IF	CITATIONS
37	Three-dimensional excitation emission matrix fluorescence spectroscopy and gel-permeating chromatography to characterize extracellular polymeric substances in aerobic granulation. Water Science and Technology, 2010, 61, 2931-2942.	1.2	30
38	Anaerobic storage as a pretreatment for enhanced biodegradability of dewatered sewage sludge. Bioresource Technology, 2011, 102, 667-671.	4.8	30
39	Interactions of metal oxide nanoparticles with extracellular polymeric substances (EPS) of algal aggregates in an eutrophic ecosystem. Ecological Engineering, 2016, 94, 464-470.	1.6	30
40	Photogeneration and steady-state concentration of hydroxyl radical in river and lake waters along middle-lower Yangtze region, China. Water Research, 2020, 176, 115774.	5.3	30
41	Fraction Distributions of Phosphorus in Sewage Sludge and Sludge Ash. Waste and Biomass Valorization, 2012, 3, 355-361.	1.8	29
42	Aggregation kinetics of inorganic colloids in eutrophic shallow lakes: Influence of cyanobacterial extracellular polymeric substances and electrolyte cations. Water Research, 2016, 106, 344-351.	5.3	29
43	Formation and mechanisms of hydroxyl radicals during the oxygenation of sediments in Lake Poyang, China. Water Research, 2021, 202, 117442.	5.3	29
44	Anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a eutrophic lake. Environmental Science and Pollution Research, 2019, 26, 15084-15094.	2.7	28
45	Development of phosphorus composite biochar for simultaneous enhanced carbon sink and heavy metal immobilization in soil. Science of the Total Environment, 2022, 831, 154845.	3.9	28
46	Improved lignin degradation through distinct microbial community in subsurface sediments of one eutrophic lake. Renewable Energy, 2019, 138, 861-869.	4.3	25
47	Adsorption of cyanobacterial extracellular polymeric substance on colloidal particle: Influence of molecular weight. Science of the Total Environment, 2020, 715, 136959.	3.9	24
48	Dynamic changes in sizeâ€fractionated dissolved organic matter composition in a seasonally iceâ€covered Arctic River. Limnology and Oceanography, 2021, 66, 3085-3099.	1.6	22
49	Temporal and spatial distribution of Microcystis biomass and genotype in bloom areas of Lake Taihu. Chemosphere, 2018, 209, 730-738.	4.2	20
50	Organic matter stabilized Fe in drinking water treatment residue with implications for environmental remediation. Water Research, 2021, 189, 116688.	5.3	20
51	Two-dimension fluorescence correlation spectroscopy to characterize the binding of organic ligands with zinc in eutrophic lake. Chinese Chemical Letters, 2015, 26, 205-209.	4.8	18
52	pH-dependent phosphatization of ZnO nanoparticles and its influence on subsequent lead sorption. Environmental Pollution, 2016, 208, 723-731.	3.7	18
53	Comparison in UV-induced photodegradation properties of dissolved organic matters with different origins. Chemosphere, 2021, 280, 130633.	4.2	18
54	Effects of molecular weight fractions and chemical properties of time-series cyanobacterial extracellular polymeric substances on the aggregation of lake colloidal particles. Science of the Total Environment, 2019, 692, 1201-1208.	3.9	17

#	Article	IF	Citations
55	Abundance, chemical composition and lead adsorption properties of sedimentary colloids in a eutrophic shallow lake. Chemosphere, 2019, 218, 534-539.	4.2	16
56	Molecular weight-dependent heterogeneities in photochemical formation of hydroxyl radical from dissolved organic matters with different sources. Science of the Total Environment, 2020, 725, 138402.	3.9	16
57	Niveispirillum cyanobacteriorum sp. nov., a nitrogen-fixing bacterium isolated from cyanobacterial aggregates in a eutrophic lake. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 2537-2541.	0.8	16
58	Desorption of nitrogen from drinking water treatment residue: Implications for environmental recycling. Journal of Cleaner Production, 2019, 226, 96-105.	4.6	13
59	Adsorption and molecular weight fractionation of dissolved organic matters with different origins on colloidal surface. Chemosphere, 2020, 261, 127774.	4.2	13
60	Investigation of carbon dynamics in rhizosphere by synchrotron radiation-based Fourier transform infrared combined with two dimensional correlation spectroscopy. Science of the Total Environment, 2021, 762, 143078.	3.9	13
61	Burst of hydroxyl radicals in sediments derived by flooding/drought transformation process in Lake Poyang, China. Science of the Total Environment, 2021, 772, 145059.	3.9	13
62	Further Insights into Metal-DOM Interaction: Consideration of Both Fluorescent and Non-Fluorescent Substances. PLoS ONE, 2014, 9, e112272.	1.1	12
63	Effects of activated sludge flocs and pellets seeds on aerobic granule properties. Journal of Environmental Sciences, 2011, 23, 537-544.	3.2	11
64	The release inhibition of organic substances from microplastics in the presence of algal derived organic matters: Influence of the molecular weight-dependent inhibition heterogeneities. Environmental Research, 2021, 200, 111424.	3.7	11
65	Ceramsite production using water treatment residue as main ingredient: The key affecting factors identification. Journal of Environmental Management, 2022, 308, 114611.	3.8	11
66	A simple method to improve the adsorption properties of drinking water treatment residue by lanthanum modification. Chemosphere, 2019, 221, 750-757.	4.2	10
67	Resuspension and settlement characteristics of lake sediments amended by phosphorus inactivating materials: Implications for environmental remediation. Journal of Environmental Management, 2022, 302, 113892.	3.8	10
68	Dissolved organic matters with low molecular weight fractions exhibit high photochemical potential for reactive oxygen formation. Chemosphere, 2022, 305, 135542.	4.2	10
69	Variation of physicochemical properties of drinking water treatment residuals and Phoslock® induced by fulvic acid adsorption: Implication for lake restoration. Environmental Science and Pollution Research, 2016, 23, 351-365.	2.7	8
70	Facile preparation of magnetic porous biochars from tea waste for the removal of tetracycline from aqueous solutions: Effect of pyrolysis temperature. Chemosphere, 2022, 291, 132713.	4.2	8
71	Architecture and functional groups of biofilms during composting with and without inoculation. Process Biochemistry, 2013, 48, 1222-1226.	1.8	7
72	Drinking water treatment residue structures nitrogen-cycling microbiomes with consequences for high nitrogen conversion. Journal of Cleaner Production, 2021, 320, 128840.	4.6	7

#	Article	IF	CITATION
73	Effects of co-exposure to copper and humic acids on microalga <i>Chlorella vulgaris</i> growth inhibition, oxidative stress, and extracellular secretion. Environmental Pollutants and Bioavailability, 2021, 33, 415-424.	1.3	7
74	Flavobacterium aurantiibacter sp. nov., an orange-pigmented bacterium isolated from cyanobacterial aggregates in a eutrophic lake. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 1839-1844.	0.8	6
75	Quantifying the bioaccumulation of Pb to Chlorella vulgaris in the presence of dissolved organic matters with different molecular weights. Environmental Science and Pollution Research, 2022, 29, 70921-70932.	2.7	5
76	Characteristics and kinetics of ammonia and N2O emissions of aged refuse irrigated from landfill leachate. Waste Management, 2013, 33, 1229-1236.	3.7	4
77	Characterization and modification of the molecular weight distribution within dissolved organic matter using flow fieldâ€flow fractionation. Limnology and Oceanography: Methods, 2020, 18, 560-569.	1.0	4
78	Assessing the enhanced reduction effect with the addition of sulfate based P inactivating material during algal bloom sedimentation. Chemosphere, 2022, 300, 134656.	4.2	0