
Siân P Cartland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8005861/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	β3 Adrenergic Receptor Stimulation Promotes Reperfusion in Ischemic Limbs in a Murine Diabetic Model. Frontiers in Pharmacology, 2021, 12, 666334.	3.5	10
2	HDL Improves Cholesterol and Glucose Homeostasis and Reduces Atherosclerosis in Diabetes-Associated Atherosclerosis. Journal of Diabetes Research, 2021, 2021, 1-10.	2.3	15
3	Selenomethionine supplementation reduces lesion burden, improves vessel function and modulates the inflammatory response within the setting of atherosclerosis. Redox Biology, 2020, 29, 101409.	9.0	29
4	Vascular transcriptome landscape of <i>Trail</i> ^{â^'/â^'} mice: Implications and therapeutic strategies for diabetic vascular disease. FASEB Journal, 2020, 34, 9547-9562.	0.5	6
5	A "Western Diet―promotes symptoms of hepatic steatosis in spontaneously hypertensive rats. International Journal of Experimental Pathology, 2020, 101, 152-161.	1.3	6
6	TRAIL signals, extracellular matrix and vessel remodelling. Vascular Biology (Bristol, England), 2020, 2, R73-R84.	3.2	5
7	Colchicine as a Novel Therapy for Suppressing Chemokine Production in Patients With an Acute Coronary Syndrome: A Pilot Study. Clinical Therapeutics, 2019, 41, 2172-2181.	2.5	33
8	A Nanoparticle-Based Affinity Sensor that Identifies and Selects Highly Cytokine-Secreting Cells. IScience, 2019, 20, 137-147.	4.1	17
9	Broadâ€spectrum chemokine inhibition blocks inflammationâ€induced angiogenesis, but preserves ischemiaâ€driven angiogenesis. FASEB Journal, 2019, 33, 13423-13434.	0.5	6
10	TRAIL-Expressing Monocyte/Macrophages Are Critical for Reducing Inflammation and Atherosclerosis. IScience, 2019, 12, 41-52.	4.1	33
11	Tumour necrosis factor superfamily members in ischaemic vascular diseases. Cardiovascular Research, 2019, 115, 713-720.	3.8	13
12	Microglia in the RVLM of SHR have reduced P2Y12R and CX3CR1 expression, shorter processes, and lower cell density. Autonomic Neuroscience: Basic and Clinical, 2019, 216, 9-16.	2.8	15
13	TRAIL protects against endothelial dysfunction in vivo and inhibits angiotensin-II-induced oxidative stress in vascular endothelial cells in vitro. Free Radical Biology and Medicine, 2018, 126, 341-349.	2.9	26
14	Selenomethionine supplementation reduces extracellular trap formation and lesion burden in a mouse model of atherosclerosis. Free Radical Biology and Medicine, 2018, 120, S91.	2.9	0
15	Non-alcoholic fatty liver disease, vascular inflammation and insulin resistance are exacerbated by TRAIL deletion in mice. Scientific Reports, 2017, 7, 1898.	3.3	36
16	Dietary Selenomethionine Supplementation Limits Extracellular Trap Formation and Reduces Lesion Burden in a Mouse Model of Atherosclerosis. Free Radical Biology and Medicine, 2017, 112, 126-127.	2.9	0
17	NADPH Oxidases, Angiogenesis, and Peripheral Artery Disease. Antioxidants, 2017, 6, 56.	5.1	10
18	Chemokine binding protein â€~M3' limits atherosclerosis in apolipoprotein E-/- mice. PLoS ONE, 2017, 12, e0173224.	2.5	16

SIâN P CARTLAND

#	Article	IF	CITATIONS
19	Comparative Evaluation of TRAIL, FGF-2 and VEGF-A-Induced Angiogenesis In Vitro and In Vivo. International Journal of Molecular Sciences, 2016, 17, 2025.	4.1	42
20	Insulin promotes vascular smooth muscle cell proliferation and apoptosis via differential regulation of tumor necrosis factorâ€related apoptosisâ€inducing ligand. Journal of Diabetes, 2016, 8, 568-578.	1.8	14
21	HDL Particle Size Is a Critical Determinant of ABCA1-Mediated Macrophage Cellular Cholesterol Export. Circulation Research, 2015, 116, 1133-1142.	4.5	240
22	TRAIL Deficiency Contributes to Diabetic Nephropathy in Fat-Fed ApoE-/- Mice. PLoS ONE, 2014, 9, e92952.	2.5	22
23	TRAIL-Deficiency Accelerates Vascular Calcification in Atherosclerosis via Modulation of RANKL. PLoS ONE, 2013, 8, e74211.	2.5	49
24	Dendritic Cells in Atherosclerosis. Current Pharmaceutical Design, 2013, 19, 5883-5890.	1.9	6
25	Cholesterol through the Looking Glass. Journal of Biological Chemistry, 2012, 287, 33897-33904.	3.4	25
26	Caveolin-1-Mediated Apolipoprotein A-I Membrane Binding Sites Are Not Required for Cholesterol Efflux. PLoS ONE, 2011, 6, e23353.	2.5	13
27	Hypoxia regulates the production and activity of glucose transporter-1 and indoleamine 2,3-dioxygenase in monocyte-derived endothelial-like cells: possible relevance to infantile haemangioma pathogenesis. British Journal of Dermatology, 2011, 164, 308-315.	1.5	40
28	TNF-related apoptosis-inducing ligand (TRAIL) protects against diabetes and atherosclerosis in Apoe â^'/â^' mice. Diabetologia, 2011, 54, 3157-3167.	6.3	102
29	Expression and stability of two isoforms of ABCG1 in human vascular cells. Atherosclerosis, 2010, 208, 75-82.	0.8	29
30	Caveolin-1-dependent and -independent membrane domains. Journal of Lipid Research, 2009, 50, 1609-1620.	4.2	24
31	Smart Tissue Culture: in Situ Monitoring of the Activity of Protease Enzymes Secreted from Live Cells Using Nanostructured Photonic Crystals. Nano Letters, 2009, 9, 2021-2025.	9.1	91
32	Conformational activation of CD11b without shedding of L-selectin on circulating human neutrophils. Journal of Leukocyte Biology, 2007, 82, 1115-1125.	3.3	21
33	ABCA1 and ABCG1 Synergize to Mediate Cholesterol Export to ApoA-I. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 534-540.	2.4	375
34	Regulation of Intestinal Dendritic Cell Migration and Activation by Plasmacytoid Dendritic Cells, TNF-α and Type 1 IFNs after Feeding a TLR7/8 Ligand. Journal of Immunology, 2006, 176, 5205-5212.	0.8	104
35	Cell Replacement Therapy and the Evasion of Destructive Immunity. Stem Cell Reviews and Reports, 2005, 1, 159-168.	5.6	13
36	Embryonic stem cells: a novel source of dendritic cells for clinical applications. International Immunopharmacology, 2005, 5, 13-21.	3.8	31

#	Article	IF	CITATIONS
37	Embryonic stem cells and the challenge of transplantation tolerance. Trends in Immunology, 2004, 25, 465-470.	6.8	73
38	Stable lines of genetically modified dendritic cells from mouse embryonic stem cells. Transplantation, 2003, 76, 606-608.	1.0	21