Ana Krofliĕ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8005662/publications.pdf Version: 2024-02-01

567281 610901 27 606 15 24 citations h-index g-index papers 28 28 28 741 docs citations times ranked citing authors all docs

ΔΝΑ ΚΡΟΕΙΙΆ

#	Article	IF	CITATIONS
1	Critical review on the development of analytical techniques for the elemental analysis of airborne particulate matter. Trends in Environmental Analytical Chemistry, 2022, 33, e00155.	10.3	13
2	Seasonal variability of nitroaromatic compounds in ambient aerosols: Mass size distribution, possible sources and contribution to water-soluble brown carbon light absorption. Chemosphere, 2022, 299, 134381.	8.2	10
3	Impact of air pollution on outdoor cultural heritage objects and decoding the role of particulate matter: a critical review. Environmental Science and Pollution Research, 2022, 29, 46405-46437.	5.3	10
4	Determination of trace concentrations of simple phenols in ambient PM samples. Chemosphere, 2022, 303, 135313.	8.2	2
5	Guaiacol Nitration in a Simulated Atmospheric Aerosol with an Emphasis on Atmospheric Nitrophenol Formation Mechanisms. ACS Earth and Space Chemistry, 2021, 5, 1083-1093.	2.7	14
6	No more waste at the elemental analysis of airborne particulate matter on quartz fibre filters. Talanta, 2021, 226, 122110.	5.5	11
7	Electrochemical stability and degradation of commercial Rh/C catalyst in acidic media. Electrochimica Acta, 2021, 400, 139435.	5.2	5
8	OH radicals reactivity towards phenol-related pollutants in water: temperature dependence of the rate constants and novel insights into the [OH–phenol]˙ adduct formation. Physical Chemistry Chemical Physics, 2020, 22, 1324-1332.	2.8	22
9	Aqueous-Phase Brown Carbon Formation from Aromatic Precursors under Sunlight Conditions. Atmosphere, 2020, 11, 131.	2.3	22
10	Chemical characterization of fine aerosols in respect to water-soluble ions at the eastern Middle Adriatic coast. Environmental Science and Pollution Research, 2020, 27, 10249-10264.	5.3	16
11	Kinetic and Theoretical Study of the Atmospheric Aqueous-Phase Reactions of OH Radicals with Methoxyphenolic Compounds. Journal of Physical Chemistry A, 2019, 123, 7828-7838.	2.5	37
12	Electrochemistry as a Tool for Studies of Complex Reaction Mechanisms: The Case of the Atmospheric Aqueous-Phase Aging of Catechols. Environmental Science & Technology, 2019, 53, 11195-11203.	10.0	11
13	Underappreciated and Complex Role of Nitrous Acid in Aromatic Nitration under Mild Environmental Conditions: The Case of Activated Methoxyphenols. Environmental Science & Technology, 2018, 52, 13756-13765.	10.0	37
14	Nighttime Aqueous-Phase Formation of Nitrocatechols in the Atmospheric Condensed Phase. Environmental Science & Technology, 2018, 52, 9722-9730.	10.0	57
15	Size-Resolved Surface-Active Substances of Atmospheric Aerosol: Reconsideration of the Impact on Cloud Droplet Formation. Environmental Science & amp; Technology, 2018, 52, 9179-9187.	10.0	31
16	Acute toxicity of emerging atmospheric pollutants from wood lignin due to biomass burning. Journal of Hazardous Materials, 2017, 338, 132-139.	12.4	33
17	Quantum Chemical Calculations Resolved Identification of Methylnitrocatechols in Atmospheric Aerosols. Environmental Science & amp; Technology, 2016, 50, 5526-5535.	10.0	47
18	Thermodynamics and Specific Ion Effects in Connection with Micellization of Ionic Surfactants. , 2016, , 491-518.		0

Ana Krofliĕ

#	Article	IF	CITATIONS
19	Does toxicity of aromatic pollutants increase under remote atmospheric conditions?. Scientific Reports, 2015, 5, 8859.	3.3	30
20	Unraveling Pathways of Guaiacol Nitration in Atmospheric Waters: Nitrite, A Source of Reactive Nitronium Ion in the Atmosphere. Environmental Science & Technology, 2015, 49, 9150-9158.	10.0	44
21	Hydrophobicity of counterions as a driving force in the self-assembly process: Dodecyltrimethylammonium chloride and parabens. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460, 108-117.	4.7	14
22	Discovery of the first inhibitors of bacterial enzyme d-aspartate ligase from Enterococcus faecium (Aslfm). European Journal of Medicinal Chemistry, 2013, 67, 208-220.	5.5	19
23	6-Arylpyrido[2,3-d]pyrimidines as Novel ATP-Competitive Inhibitors of Bacterial D-Alanine:D-Alanine Ligase. PLoS ONE, 2012, 7, e39922.	2.5	21
24	Thermodynamic Characterization of 3-[(3-Cholamidopropyl)-dimethylammonium]-1-propanesulfonate (CHAPS) Micellization Using Isothermal Titration Calorimetry: Temperature, Salt, and pH Dependence. Langmuir, 2012, 28, 10363-10371.	3.5	46
25	Dissociation Constants of Parabens and Limiting Conductances of Their Ions in Water. Journal of Physical Chemistry B, 2012, 116, 1385-1392.	2.6	18
26	What affects the degree of micelle ionization: conductivity study of alkyltrimethylammonium chlorides. Acta Chimica Slovenica, 2012, 59, 564-70.	0.6	10
27	Influence of the alkyl chain length, temperature, and added salt on the thermodynamics of micellization: Alkyltrimethylammonium chlorides in NaCl aqueous solutions. Journal of Chemical Thermodynamics, 2011, 43, 1557-1563.	2.0	26