James M A Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8005629/publications.pdf

Version: 2024-02-01

40 papers

5,460 citations

172457 29 h-index 289244 40 g-index

45 all docs

45 docs citations

45 times ranked

5681 citing authors

#	Article	IF	CITATIONS
1	Multiple 9-1-1 complexes promote homolog synapsis, DSB repair, and ATR signaling during mammalian meiosis. ELife, 2022, 11, .	6.0	7
2	Frequent loss of heterozygosity in CRISPR-Cas9–edited early human embryos. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	123
3	Epigenetics drive the evolution of sex chromosomes in animals and plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200124.	4.0	15
4	Y chromosome functions in mammalian spermatogenesis. ELife, 2021, 10, .	6.0	16
5	CRISPR-Cas9 effectors facilitate generation of single-sex litters and sex-specific phenotypes. Nature Communications, 2021, 12, 6926.	12.8	15
6	Human Embryogenesis: A Comparative Perspective. Annual Review of Cell and Developmental Biology, 2020, 36, 411-440.	9.4	39
7	Paul S. Burgoyne (1946-2020). Development (Cambridge), 2020, 147, .	2.5	1
8	Advances and challenges in genetic technologies to produce single-sex litters. PLoS Genetics, 2020, 16, e1008898.	3.5	13
9	A single-cell transcriptome atlas of marsupial embryogenesis and XÂinactivation. Nature, 2020, 586, 612-617.	27.8	34
10	Sex Chromosome Effects on Male–Female Differences in Mammals. Current Biology, 2018, 28, R1313-R1324.	3.9	75
11	SETDB1 Links the Meiotic DNA Damage Response to Sex Chromosome Silencing in Mice. Developmental Cell, 2018, 47, 645-659.e6.	7.0	68
12	ATR is a multifunctional regulator of male mouse meiosis. Nature Communications, 2018, 9, 2621.	12.8	66
13	Non-Canonical and Sexually Dimorphic X Dosage Compensation States in the Mouse and Human Germline. Developmental Cell, 2017, 40, 289-301.e3.	7.0	74
14	Genome editing reveals a role for OCT4 in human embryogenesis. Nature, 2017, 550, 67-73.	27.8	315
15	Fertile offspring from sterile sex chromosome trisomic mice. Science, 2017, 357, 932-935.	12.6	45
16	DNA damage response protein TOPBP1 regulates X chromosome silencing in the mammalian germ line. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12536-12541.	7.1	43
17	Mammalian meiotic silencing exhibits sexually dimorphic features. Chromosoma, 2016, 125, 215-226.	2.2	30
18	Histone H2AFX Links Meiotic Chromosome Asynapsis to Prophase I Oocyte Loss in Mammals. PLoS Genetics, 2015, 11, e1005462.	3.5	55

#	Article	IF	Citations
19	Enhancer Evolution across 20 Mammalian Species. Cell, 2015, 160, 554-566.	28.9	671
20	Meiotic Silencing in Mammals. Annual Review of Genetics, 2015, 49, 395-412.	7.6	184
21	ATR acts stage specifically to regulate multiple aspects of mammalian meiotic silencing. Genes and Development, 2013, 27, 1484-1494.	5.9	127
22	Phosphorylation of Chromosome Core Components May Serve as Axis Marks for the Status of Chromosomal Events during Mammalian Meiosis. PLoS Genetics, 2012, 8, e1002485.	3.5	68
23	Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation. Nature, 2012, 487, 254-258.	27.8	136
24	Meiotic DNA double-strand breaks and chromosome asynapsis in mice are monitored by distinct HORMAD2-independent and -dependent mechanisms. Genes and Development, 2012, 26, 958-973.	5.9	128
25	Function of the Sex Chromosomes in Mammalian Fertility. Cold Spring Harbor Perspectives in Biology, 2011, 3, a002675-a002675.	5.5	60
26	Evidence that Meiotic Sex Chromosome Inactivation Is Essential for Male Fertility. Current Biology, 2010, 20, 2117-2123.	3.9	220
27	Key Features of the X Inactivation Process Are Conserved between Marsupials and Eutherians. Current Biology, 2009, 19, 1478-1484.	3.9	65
28	The consequences of asynapsis for mammalian meiosis. Nature Reviews Genetics, 2009, 10, 207-216.	16.3	330
29	Using RNA FISH to Study Gene Expression During Mammalian Meiosis. Methods in Molecular Biology, 2009, 558, 433-444.	0.9	39
30	The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression. Nature Genetics, 2008, 40, 794-799.	21.4	289
31	Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation. Journal of Cell Biology, 2008, 182, 263-276.	5.2	167
32	Meiotic sex chromosome inactivation. Development (Cambridge), 2007, 134, 1823-1831.	2.5	591
33	Meiosis 2007 – Where have we got to and where are we going?. Chromosome Research, 2007, 15, 517-521.	2.2	8
34	MALE MEIOTIC SEX CHROMOSOME INACTIVATION AND MEIOTIC SILENCING. , 2007, , 27-45.		1
35	Pachytene Asynapsis Drives Meiotic Sex Chromosome Inactivation and Leads to Substantial Postmeiotic Repression in Spermatids. Developmental Cell, 2006, 10, 521-529.	7.0	258
36	X-Inactivation: Close Encounters of the X Kind. Current Biology, 2006, 16, R259-R261.	3.9	2

#	Article	IF	CITATIONS
37	Silencing of unsynapsed meiotic chromosomes in the mouse. Nature Genetics, 2005, 37, 41-47.	21.4	500
38	Deletions on mouse Yq lead to upregulation of multiple X- and Y-linked transcripts in spermatids. Human Molecular Genetics, 2005, 14, 2705-2715.	2.9	91
39	BRCA1, Histone H2AX Phosphorylation, and Male Meiotic Sex Chromosome Inactivation. Current Biology, 2004, 14, 2135-2142.	3.9	368
40	Meiotic sex chromosome inactivation in male mice with targeted disruptions of <i>Xist</i> . Journal of Cell Science, 2002, 115, 4097-4105.	2.0	119