Thomas G Thundat

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8004823/thomas-g-thundat-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 108 15,441 394 h-index g-index citations papers 6.73 5.8 441 17,377 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
394	Palladium Nanosheet-Based Dual Gas Sensors for Sensitive Room-Temperature Hydrogen and Carbon Monoxide Detection <i>ACS Sensors</i> , 2022 ,	9.2	5
393	Standoff and Point Detection of Thin Polymer Layers Using Microcantilever Photothermal Spectroscopy. <i>Journal of the Electrochemical Society</i> , 2022 , 169, 037501	3.9	
392	Photoinduced Multistable Resonance Frequency Switching of Phase Change Microstring at Room Temperature. <i>Advanced Electronic Materials</i> , 2022 , 8, 2100819	6.4	1
391	Localized anisotropic stress in the sodiation of antimony anode. <i>Nano Energy</i> , 2022 , 98, 107349	17.1	
390	(Invited) Photothermal Cantilever Sensors for Soil Health Monitoring. <i>ECS Meeting Abstracts</i> , 2021 , MA2021-02, 1669-1669	Ο	
389	Toward a mechanically stable solid electrolyte interphase. <i>Matter</i> , 2021 , 4, 2119-2122	12.7	0
388	Optimal floc structure for effective dewatering of polymer treated oil sands tailings. <i>Minerals Engineering</i> , 2021 , 160, 106688	4.9	2
387	Reduced Graphene Oxide-Wrapped Palladium Nanowires Coated with a Layer of Zeolitic Imidazolate Framework-8 for Hydrogen Sensing. <i>ACS Applied Nano Materials</i> , 2021 , 4, 8081-8093	5.6	4
386	Synthesis and Characterization of Zinc Phthalocyanine-Cellulose Nanocrystal (CNC) Conjugates: Toward Highly Functional CNCs. <i>ACS Applied Materials & Districtional CNCs.</i> 12, 43992-44006	9.5	4
385	The effect of oxygen flow rate on metalihsulator transition (MIT) characteristics of vanadium dioxide (VO2) thin films by pulsed laser deposition (PLD). <i>Applied Surface Science</i> , 2020 , 529, 146995	6.7	10
384	Multi-Walled Carbon Nanotubes Decorated with Silver Nanoparticles for Acetone Gas Sensing at Room Temperature. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 167519	3.9	44
383	Microfluidic resonators with two parallel channels for independent sample loading and effective density tuning. <i>Micro and Nano Systems Letters</i> , 2020 , 8,	2	1
382	Enhanced nanoplasmonic heating in standoff sensing of explosive residues with infrared reflection-absorption spectroscopy. <i>Optics Letters</i> , 2020 , 45, 2144-2147	3	2
381	Perspective Maintaining the Quality of Life in Depopulating Communities: Expanding Smart Sensing via a Novel Power Supply. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 037564	3.9	0
380	Mapping the surface potential, charge density and adhesion of cellulose nanocrystals using advanced scanning probe microscopy. <i>Carbohydrate Polymers</i> , 2020 , 246, 116393	10.3	2
379	Consistently High Values in p-i-n Type Perovskite Solar Cells Using Ni-Doped NiO Nanomesh as the Hole Transporting Layer. <i>ACS Applied Materials & District Research</i> , 12, 11467-11478	9.5	33
378	Transparent and Flexible Thermal Insulation Window Material. <i>Cell Reports Physical Science</i> , 2020 , 1, 10	0640	6

377	Flexible Ultraviolet Photodetectors Based on One-Dimensional Gallium-Doped Zinc Oxide Nanostructures. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 3522-3529	4	35
376	Evaporation dynamics of water droplets on superhydrophobic nanograss surfaces. <i>International Journal of Heat and Mass Transfer</i> , 2020 , 160, 120149	4.9	7
375	Hydrogen Sensing at Room Temperature Using Flame-Synthesized Palladium-Decorated Crumpled Reduced Graphene Oxide Nanocomposites. <i>ACS Sensors</i> , 2020 , 5, 2344-2350	9.2	18
374	Review Nanomechanical Calorimetric Infrared Spectroscopy using Bi-Material Microfluidic Cantilevers. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 037504	3.9	4
373	Tribo-Tunneling DC Generator with Carbon Aerogel/Silicon Multi-Nanocontacts. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900464	6.4	23
372	Scaled-up Direct-Current Generation in MoS Multilayer-Based Moving Heterojunctions. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 35404-35409	9.5	25
371	Mechanistic Understanding and Nanomechanics of Multiple Hydrogen-Bonding Interactions in Aqueous Environment. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 4540-4548	3.8	7
370	Stretchable, Injectable, and Self-Healing Conductive Hydrogel Enabled by Multiple Hydrogen Bonding toward Wearable Electronics. <i>Chemistry of Materials</i> , 2019 , 31, 4553-4563	9.6	194
369	Structure, morphology, and luminescent behavior of RE3+-doped GdVO4 thin films. <i>Applied Physics A: Materials Science and Processing</i> , 2019 , 125, 1	2.6	1
368	Sample Preparation in Centrifugal Microfluidic Discs for Human Serum Metabolite Analysis by Surface Assisted Laser Desorption/Ionization Mass Spectrometry. <i>Analytical Chemistry</i> , 2019 , 91, 7570-	73 7 7	10
367	Thermomechanical responses of microfluidic cantilever capture DNA melting and properties of DNA premelting states using picoliters of DNA solution. <i>Applied Physics Letters</i> , 2019 , 114, 173703	3.4	6
366	Polypyrrole-Doped Conductive Supramolecular Elastomer with Stretchability, Rapid Self-Healing, and Adhesive Property for Flexible Electronic Sensors. <i>ACS Applied Materials & Description</i> , 11, 18720-18729	9.5	91
365	Resonant hair humidity sensors for disposable applications: Revisit the hair hygrometer. <i>Sensors and Actuators B: Chemical</i> , 2019 , 292, 1-6	8.5	2
364	Polymer Microelectromechanical Systems: Hydrogel Microelectromechanical System (MEMS) Resonators: Beyond Cost-Effective Sensing Platform (Adv. Mater. Technol. 3/2019). <i>Advanced Materials Technologies</i> , 2019 , 4, 1970017	6.8	
363	Nanophotonic enhancement and improved electron extraction in perovskite solar cells using near-horizontally aligned TiO2 nanorods. <i>Journal of Power Sources</i> , 2019 , 417, 176-187	8.9	14
362	Separation and Quantum Tunneling of Photo-generated Carriers Using a Tribo-Induced Field. <i>Matter</i> , 2019 , 1, 650-660	12.7	31
361	Fabrication of Phase Change Microstring Resonators via Top Down Lithographic Techniques: Incorporation of VO2/TiO2 Into Conventional Processes. <i>Journal of Microelectromechanical Systems</i> , 2019 , 28, 766-775	2.5	3
360	Investigating fouling at the pore-scale using a microfluidic membrane mimic filtration system. <i>Scientific Reports</i> , 2019 , 9, 10587	4.9	14

359	Magnetoelectric Coupling in NiMnIh/PLZT Artificial Multiferroic Heterostructure and Its Application in Mid-IR Photothermal Modulation by External Magnetic Field. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 2226-2235	4	5
358	Electroless deposition of Fe-Ni alloys from acidic and alkaline solutions using hypophosphite as a reducing agent. <i>Journal of the Serbian Chemical Society</i> , 2019 , 84, 1199-1208	0.9	
357	Interfacial friction-induced electronic excitation mechanism for tribo-tunneling current generation. <i>Materials Horizons</i> , 2019 , 6, 1020-1026	14.4	46
356	Photothermal Cantilever Deflection Spectroscopy. <i>Electrochemical Society Interface</i> , 2019 , 28, 55-57	3.6	16
355	Dual Channel Microfluidic Resonators for Simultaneous Measurements of Liquid Analytes 2019,		1
354	Anomalous interfacial stress generation during sodium intercalation/extraction in MoS thin-film anodes. <i>Science Advances</i> , 2019 , 5, eaav2820	14.3	50
353	Hydrogel Microelectromechanical System (MEMS) Resonators: Beyond Cost-Effective Sensing Platform. <i>Advanced Materials Technologies</i> , 2019 , 4, 1800597	6.8	7
352	Development of a 3D-printed modified Scheludko-cell: Potential application for adsorption and thin liquid film study. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 561, 341-3-	48 ¹	1
351	Collapse of house-of-cards clay structures and corresponding tailings dewatering induced by alternating electric fields. <i>Drying Technology</i> , 2019 , 37, 1053-1067	2.6	6
350	Appearance of SERS activity in single silver nanoparticles by laser-induced reshaping. <i>Nanoscale</i> , 2018 , 11, 321-330	7.7	13
349	Phase transformation induced modulation of the resonance frequency of VO2/TiO2 coated microcantilevers. <i>MRS Advances</i> , 2018 , 3, 359-364	0.7	8
348	Surface State-Induced Anomalous Negative Thermal Quenching of Multiferroic BiFeO3 Nanowires (Phys. Status Solidi RRL 1/2018). <i>Physica Status Solidi - Rapid Research Letters</i> , 2018 , 12, 1870403	2.5	1
347	Injectable Self-Healing Zwitterionic Hydrogels Based on Dynamic Benzoxaborole-Sugar Interactions with Tunable Mechanical Properties. <i>Biomacromolecules</i> , 2018 , 19, 596-605	6.9	57
346	Hybrid micromolding of silver micro fiber doped electrically conductive elastomeric composite polymer for flexible sensors and electronic devices. <i>Microsystem Technologies</i> , 2018 , 24, 4159-4164	1.7	10
345	Fabrication of antifouling and antibacterial polyethersulfone (PES)/cellulose nanocrystals (CNC) nanocomposite membranes. <i>Journal of Membrane Science</i> , 2018 , 549, 350-356	9.6	84
344	Robust fabrication of thin film polyamide-TiO nanocomposite membranes with enhanced thermal stability and anti-biofouling propensity. <i>Scientific Reports</i> , 2018 , 8, 784	4.9	96
343	Sustained electron tunneling at unbiased metal-insulator-semiconductor triboelectric contacts. <i>Nano Energy,</i> 2018 , 48, 320-326	17.1	68
342	Portable Nanofiber-Light Addressable Potentiometric Sensor for Rapid Escherichia coli Detection in Orange Juice. <i>ACS Sensors</i> , 2018 , 3, 815-822	9.2	44

(2017-2018)

341	ReviewDrganic-Inorganic Hybrid Functional Materials: An Integrated Platform for Applied Technologies. <i>Journal of the Electrochemical Society</i> , 2018 , 165, B3137-B3156	3.9	199
340	Exploiting broader dynamic range in Si-bridge modified QTFB for sensitive thermometric applications. <i>Sensors and Actuators A: Physical</i> , 2018 , 279, 442-447	3.9	1
339	Carbon fiber doped thermosetting elastomer for flexible sensors: physical properties and microfabrication. <i>Scientific Reports</i> , 2018 , 8, 12313	4.9	22
338	Sharpness and intensity modulation of the metal-insulator transition in ultrathin VO2 films by interfacial structure manipulation. <i>Physical Review Materials</i> , 2018 , 2,	3.2	8
337	Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS multilayers. <i>Nature Nanotechnology</i> , 2018 , 13, 112-116	28.7	146
336	Surface State-Induced Anomalous Negative Thermal Quenching of Multiferroic BiFeO3 Nanowires. <i>Physica Status Solidi - Rapid Research Letters</i> , 2018 , 12, 1700352	2.5	3
335	Microfluidic Cantilever Biosensors 2018,		1
334	Modified cantilever arrays improve sensitivity and reproducibility of nanomechanical sensing in living cells. <i>Communications Biology</i> , 2018 , 1, 175	6.7	8
333	Spin photonic forces in non-reciprocal waveguides. <i>Optics Express</i> , 2018 , 26, 23898-23910	3.3	10
332	Plasmonic absorbers with optical cavity for the enhancement of photothermal/opto-calorimetric infrared spectroscopy. <i>Applied Physics Letters</i> , 2017 , 110, 011901	3.4	4
331	Metabolic Study of Cancer Cells Using a pH Sensitive Hydrogel Nanofiber Light Addressable Potentiometric Sensor. <i>ACS Sensors</i> , 2017 , 2, 151-156	9.2	45
330	Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics. <i>Journal of Optics (United Kingdom)</i> , 2017 , 19, 055101	1.7	15
329	Thermomechanical analysis of picograms of polymers using a suspended microchannel cantilever. <i>RSC Advances</i> , 2017 , 7, 8415-8420	3.7	6
328	A parametric study on the synergistic impacts of chemical additives on permeation properties of thin film composite polyamide membrane. <i>Journal of Membrane Science</i> , 2017 , 535, 248-257	9.6	66
327	Rapid and Highly Sensitive Detection of Dopamine Using Conjugated Oxaborole-Based Polymer and Glycopolymer Systems. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 15225-15231	9.5	28
326	A rational design for enhanced oxygen reduction: Strongly coupled silver nanoparticles and engineered perovskite nanofibers. <i>Nano Energy</i> , 2017 , 38, 392-400	17.1	44
325	Flocculation and Dewatering of Mature Fine Tailings Using Temperature-Responsive Cationic Polymers. <i>Langmuir</i> , 2017 , 33, 5900-5909	4	29
324	. IEEE Sensors Journal, 2017 , 17, 4773-4780	4	2

323	Ultrasensitive Detection of Cu Using a Microcantilever Sensor Modified with L-Cysteine Self-Assembled Monolayer. <i>Applied Biochemistry and Biotechnology</i> , 2017 , 183, 555-565	3.2	8
322	Freestanding hierarchical porous carbon film derived from hybrid nanocellulose for high-power supercapacitors. <i>Nano Research</i> , 2017 , 10, 1847-1860	10	43
321	Core cross-linked double hydrophilic block copolymer micelles based on multiple hydrogen-bonding interactions. <i>Polymer Chemistry</i> , 2017 , 8, 3066-3073	4.9	29
320	Bacterial Detection Using Peptide-Based Platform and Impedance Spectroscopy. <i>Methods in Molecular Biology</i> , 2017 , 1572, 113-124	1.4	1
319	Broadband Mid-Infrared Stand-Off Reflection-Absorption Spectroscopy Using a Pulsed External Cavity Quantum Cascade Laser. <i>Applied Spectroscopy</i> , 2017 , 71, 1494-1505	3.1	5
318	A coupling for success: Controlled growth of Co/CoOx nanoshoots on perovskite mesoporous nanofibres as high-performance trifunctional electrocatalysts in alkaline condition. <i>Nano Energy</i> , 2017 , 32, 247-254	17.1	153
317	The role of chloride ions in plasma-activated water treatment processes. <i>Environmental Science:</i> Water Research and Technology, 2017 , 3, 156-168	4.2	11
316	Spatially resolved organic coating on clay minerals in bitumen froth revealed by atomic force microscopy adhesion mapping. <i>Fuel</i> , 2017 , 191, 283-289	7.1	15
315	Abiotic streamers in a microfluidic system. <i>Soft Matter</i> , 2017 , 13, 8698-8705	3.6	12
314	Effect of process parameters on phase stability and metal-insulator transition of vanadium dioxide (VO2) thin films by pulsed laser deposition. <i>Acta Materialia</i> , 2017 , 137, 12-21	8.4	25
313	Transparent and highly luminescent dysprosium- doped GdVO4 thin films fabricated by pulsed laser deposition. <i>Thin Solid Films</i> , 2017 , 638, 332-337	2.2	4
312	2017,		3
311	Effect of interface on mid-infrared photothermal response of MoS2 thin film grown by pulsed laser deposition. <i>Nano Research</i> , 2017 , 10, 3571-3584	10	23
310	Electrophoresis assisted time-of-flow mass spectrometry using hollow nanomechanical resonators. <i>Scientific Reports</i> , 2017 , 7, 3535	4.9	5
309	Evaluation of efficiency factors and internal resistance of thermoelectric materials. <i>International Journal of Energy Research</i> , 2017 , 41, 198-206	4.5	8
308	Synthesis of thin film composite polyamide membranes: Effect of monohydric and polyhydric alcohol additives in aqueous solution. <i>Journal of Membrane Science</i> , 2017 , 523, 336-345	9.6	48
307	Quarter wavelength resonators for use in wireless capacitive power transfer 2017,		4
306	Microcantilever Sensors 2017 ,		1

(2016-2016)

305	Pulsed Laser Deposited Dysprosium-Doped Gadolinium-Vanadate Thin Films for Noncontact, Self-Referencing Luminescence Thermometry. <i>Advanced Materials</i> , 2016 , 28, 7745-52	24	79
304	In-situ probing of thermal desorption of vapor molecules on a nanowire via work function variance. <i>Nano Research</i> , 2016 , 9, 3334-3345	10	6
303	Dynamics of bacterial streamers induced clogging in microfluidic devices. <i>Lab on A Chip</i> , 2016 , 16, 4091	-4 , 0 9 6	23
302	Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes. <i>Nature Communications</i> , 2016 , 7, 12947	17.4	99
301	Effect of Steam-Assisted Gravity Drainage Produced Water Properties on Oil/Water Transient Interfacial Tension. <i>Energy & Energy </i>	4.1	11
300	A nanostructured surface increases friction exponentially at the solid-gas interface. <i>Scientific Reports</i> , 2016 , 6, 32996	4.9	5
299	A Novel Approach Toward Fabrication of High Performance Thin Film Composite Polyamide Membranes. <i>Scientific Reports</i> , 2016 , 6, 22069	4.9	186
298	High performance triboelectric nanogenerators based on phase-inversion piezoelectric membranes of poly(vinylidene fluoride)-zinc stannate (PVDF-ZnSnO3) and polyamide-6 (PA6). <i>Nano Energy</i> , 2016 , 30, 470-480	17.1	97
297	Thermomechanical behavior of a bimaterial microchannel cantilever subjected to periodic IR radiation. <i>Sensors and Actuators B: Chemical</i> , 2016 , 235, 273-279	8.5	7
296	Dielectric Relaxation-Based Capacitive Heating of Oil Sands. <i>Energy & Dielectric Relaxation-Based Capacitive Heating of Oil Sands</i> . <i>Energy & Dielectric Relaxation-Based Capacitive Heating of Oil Sands</i> . <i>Energy & Dielectric Relaxation-Based Capacitive Heating of Oil Sands</i> . <i>Energy & Dielectric Relaxation-Based Capacitive Heating of Oil Sands</i> . <i>Energy & Dielectric Relaxation-Based Capacitive Heating of Oil Sands</i> . <i>Energy & Dielectric Relaxation-Based Capacitive Heating Oil Sands</i> . <i>Energy & Dielectric Relaxation-Based Capacitive Heating Oil Sands</i> . <i>Energy & Dielectric Relaxation-Based Capacitive Heating Oil Sands</i> . <i>Energy & Dielectric Relaxation-Based Capacitive Heating Oil Sands</i> . <i>Energy & Dielectric Relaxation-Based Capacitive Heating Oil Sands</i> . <i>Energy & Dielectric Relaxation-Based Capacitive Heating Oil Sands</i> . <i>Energy & Dielectric Relaxation-Based Capacitive Heating Oil Sands</i> . <i>Energy & Dielectric Relaxation-Based Capacitive Heating Oil Sands</i> . <i>Energy & Dielectric Relaxation-Based Capacitive Heating Oil Sands</i> . <i>Energy & Dielectric Relaxation-Based Capacity Relaxation-Based Capa</i>	4.1	2
295	Conduction and Dielectric Relaxation Mechanisms in Athabasca Oil Sands with Application to Electrical Heating. <i>Energy & Dielectrical Heating</i> .	4.1	8
294	The detection of Escherichia coli (E. coli) with the pH sensitive hydrogel nanofiber-light addressable potentiometric sensor (NF-LAPS). <i>Sensors and Actuators B: Chemical</i> , 2016 , 226, 176-183	8.5	52
293	Effect of annealing conditions on structural and luminescencent properties of Eu3+-doped Gd2Ti2O7 thin films. <i>Applied Surface Science</i> , 2016 , 364, 273-279	6.7	6
292	Hollow Microtube Resonators via Silicon Self-Assembly toward Subattogram Mass Sensing Applications. <i>Nano Letters</i> , 2016 , 16, 1537-45	11.5	34
291	Photoluminescence of europium(III)-doped (Y Sc1DO3 nanoparticles: Linear relationship between structural and emission properties. <i>Ceramics International</i> , 2016 , 42, 3899-3906	5.1	4
290	Microwave ring resonator-based non-contact interface sensor for oil sands applications. <i>Sensors and Actuators B: Chemical</i> , 2016 , 224, 632-639	8.5	61
289	Heat capacity measurements of sub-nanoliter volumes of liquids using bimaterial microchannel cantilevers. <i>Applied Physics Letters</i> , 2016 , 108, 211906	3.4	11
288	Universal spin-momentum locked optical forces. <i>Applied Physics Letters</i> , 2016 , 108, 061102	3.4	53

287	Communication Galvanic Deposition of Gold on Silicon from Au(I) Alkaline Fluoride-Free Solutions. Journal of the Electrochemical Society, 2016 , 163, D818-D820	3.9	2
286	Electrical excitation of the local earth for resonant, wireless energy transfer. <i>Wireless Power Transfer</i> , 2016 , 3, 117-125	0.9	6
285	Quasi-wireless capacitive energy transfer for the dynamic charging of personal mobility vehicles 2016 ,		5
284	Developing high throughput thin film composite polyamide membranes for forward osmosis treatment of SAGD produced water. <i>Journal of Membrane Science</i> , 2016 , 511, 29-39	9.6	54
283	Standoff infrared spectroscopy on energetic materials using hydrogel microcantilevers 2016,		2
282	Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors. <i>Nano Energy</i> , 2016 , 25, 161-169	17.1	104
281	Galvanic Processes on Silicon Surfaces in Cu(II) Alkaline Fluoride-Free Solutions. <i>Journal of the Electrochemical Society</i> , 2016 , 163, D651-D654	3.9	2
280	Standoff Mechanical Resonance Spectroscopy Based on Infrared-Sensitive Hydrogel Microcantilevers. <i>Analytical Chemistry</i> , 2016 , 88, 9678-9684	7.8	11
279	Strain-induced electrostatic enhancements of BiFeO3 nanowire loops. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 22772-7	3.6	6
278	Nanomechanical sandwich assay for multiple cancer biomarkers in breast cancer cell-derived exosomes. <i>Nanoscale</i> , 2016 , 8, 15137-41	7.7	62
277	High resolution microwave microstrip resonator for sensing applications. <i>Sensors and Actuators A: Physical</i> , 2015 , 233, 224-230	3.9	50
276	Methane sensing at room temperature using photothermal cantilever deflection spectroscopy. Sensors and Actuators B: Chemical, 2015 , 221, 564-569	8.5	11
275	Photothermal Electrical Resonance Spectroscopy of Physisorbed Molecules on a Nanowire Resonator. <i>Nano Letters</i> , 2015 , 15, 5658-63	11.5	14
274	Thin film composite polyamide membranes: parametric study on the influence of synthesis conditions. <i>RSC Advances</i> , 2015 , 5, 54985-54997	3.7	111
273	Enhanced photo-collection in single BiFeO3 nanowire due to carrier separation from radial surface field. <i>Nano Energy</i> , 2015 , 13, 240-248	17.1	24
272	Wireless single contact power delivery 2015 ,		5
271	Electronic Nose for Recognition of Volatile Vapor Mixtures Using a Nanopore-Enhanced Opto-Calorimetric Spectroscopy. <i>Analytical Chemistry</i> , 2015 , 87, 7125-32	7.8	11
270	Investigation of Polymer Dendritic Growth in Composite Material using Contact Resonance Method. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1754, 61-67		

269	Opto-nanomechanical spectroscopic material characterization. <i>Nature Nanotechnology</i> , 2015 , 10, 870-7	28.7	25
268	Piezotransistive transduction of femtoscale displacement for photoacoustic spectroscopy. <i>Nature Communications</i> , 2015 , 6, 7885	17.4	33
267	Galvanic Deposition of Gold on GaAs: A Tip-Induced Lithography Approach. <i>Journal of the Electrochemical Society</i> , 2015 , 162, D486-D489	3.9	1
266	Rapid label-free detection of E. coli using antimicrobial peptide assisted impedance spectroscopy. <i>Analytical Methods</i> , 2015 , 7, 9744-9748	3.2	16
265	Mapping and Quantifying Surface Charges on Clay Nanoparticles. <i>Langmuir</i> , 2015 , 31, 10469-76	4	25
264	Detection of Volatile Organic Compounds Using Microwave Sensors. <i>IEEE Sensors Journal</i> , 2015 , 15, 248	3-2454	51
263	Determination of charge on asphaltene nanoaggregates in air using electrostatic force microscopy. <i>Langmuir</i> , 2015 , 31, 679-84	4	17
262	Sensitive and selective detection of hydrocarbon/water vapor mixtures with a nanoporous silicon microcantilever. <i>Sensors and Actuators B: Chemical</i> , 2015 , 206, 84-89	8.5	8
261	Quasi-wireless surface power and control for battery-free robotics. <i>Wireless Power Transfer</i> , 2015 , 2, 134-142	0.9	6
2 60	Determination of the Physical Properties of Oil Sands Components using Scanning Probe Microscopy. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1754, 69-74		
259	Label-Free Rapid Detection of Pathogens with Antimicrobial Peptide Assisted Impedance Spectrometry. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1793, 13-18		
258	Real-time Detection of Breast Cancer Cells Using Peptide-functionalized Microcantilever Arrays. <i>Scientific Reports</i> , 2015 , 5, 13967	4.9	58
257	Bacterial floc mediated rapid streamer formation in creeping flows. Scientific Reports, 2015, 5, 13070	4.9	30
256	Detection of Listeria monocytogenes with short peptide fragments from class IIa bacteriocins as recognition elements. <i>ACS Combinatorial Science</i> , 2015 , 17, 156-63	3.9	21
255	Asphaltene migration and separation in presence of aggregation in electroosmotic electrophoretic microchannel transport. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2014 , 446, 23-	·3 ⁷ 2 ¹	5
254	Dynamic and Static Manifestation of Molecular Absorption in Thin Films Probed by a Microcantilever. <i>Physical Review Applied</i> , 2014 , 1,	4.3	13
253	Selective detection of physisorbed hydrocarbons using photothermal cantilever deflection spectroscopy. <i>Sensors and Actuators B: Chemical</i> , 2014 , 191, 765-769	8.5	16
252	Effect of temperature on morphologies of evaporation-triggered asphaltene nanoaggregates. <i>Langmuir</i> , 2014 , 30, 800-4	4	25

251	Femtogram-scale photothermal spectroscopy of explosive molecules on nanostrings. <i>Analytical Chemistry</i> , 2014 , 86, 11368-72	7.8	13
250	Nanomechanical identification of liquid reagents in a microfluidic channel. <i>Lab on A Chip</i> , 2014 , 14, 130	2 <i>-</i> 7.2	20
249	Impedimetric detection of pathogenic Gram-positive bacteria using an antimicrobial peptide from class IIa bacteriocins. <i>Analytical Chemistry</i> , 2014 , 86, 1693-700	7.8	70
248	Photothermal cantilever deflection spectroscopy. <i>EPJ Techniques and Instrumentation</i> , 2014 , 1,	1.8	12
247	Surface-conjugated antimicrobial peptide leucocin a displays high binding to pathogenic gram-positive bacteria. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 1131-8	9.5	34
246	Investigation of pH-induced protein conformation changes by nanomechanical deflection. <i>Langmuir</i> , 2014 , 30, 2109-16	4	17
245	2014,		19
244	Standoff reflection bosorption spectra of surface adsorbed explosives measured with pulsed quantum cascade lasers. <i>Sensors and Actuators B: Chemical</i> , 2014 , 191, 450-456	8.5	25
243	Modulus-tunable magnetorheological elastomer microcantilevers. <i>Smart Materials and Structures</i> , 2014 , 23, 055017	3.4	10
242	Direct detection and speciation of trace explosives using a nanoporous multifunctional microcantilever. <i>Analytical Chemistry</i> , 2014 , 86, 5077-82	7.8	27
241	In situ study of electric field-induced magnetization in multiferroic BiFeO(3) nanowires. <i>Scanning</i> , 2014 , 36, 224-30	1.6	16
240	Self-Assembly of Proteins into Three-Dimensional Structures Using Bio-Conjugation. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1663, 47		O
239	Single-contact transmission for the quasi-wireless delivery of power over large surfaces. <i>Wireless Power Transfer</i> , 2014 , 1, 75-82	0.9	27
238	Photoacoustic spectroscopy of surface adsorbed molecules using a nanostructured coupled resonator array. <i>Nanotechnology</i> , 2014 , 25, 035501	3.4	9
237	Rapid discrimination of DNA strands using an opto-calorimetric microcantilever sensor. <i>Lab on A Chip</i> , 2014 , 14, 4659-64	7.2	7
236	Nanowell-patterned TiO2 microcantilevers for calorimetric chemical sensing. <i>Applied Physics Letters</i> , 2014 , 104, 141903	3.4	8
235	Protocol for biofilm streamer formation in a microfluidic device with micro-pillars. <i>Journal of Visualized Experiments</i> , 2014 ,	1.6	8
234	Suspended polymer nanobridge on a quartz resonator. <i>Applied Physics Letters</i> , 2013 , 103, 053109	3.4	14

233	Analytical model for zeta potential of asphaltene. Fuel, 2013, 108, 543-549	7.1	18
232	Electrochemical and oxygen reduction properties of pristine and nitrogen-doped few layered graphene nanoflakes (FLGs). <i>Journal of Solid State Electrochemistry</i> , 2013 , 17, 2139-2149	2.6	28
231	Sustained drug release and antibacterial activity of ampicillin incorporated poly(methyl methacrylate) Bylon6 core/shell nanofibers. <i>Polymer</i> , 2013 , 54, 2699-2705	3.9	74
230	Comments on the paper "A comprehensive modeling and vibration analysis of AFM microcantilevers subjected to nonlinear tip-sample interaction forces" by Sohrab Eslami and Nader Jalili. <i>Ultramicroscopy</i> , 2013 , 131, 92-3	3.1	
229	Plasmon assisted thermal modulation in nanoparticles. <i>Optics Express</i> , 2013 , 21, 12145-58	3.3	19
228	Activation process of reversible Pd thin film hydrogen sensors. <i>Sensors and Actuators B: Chemical</i> , 2013 , 186, 258-262	8.5	20
227	Effect of annealing atmosphere on microstructural and photoluminescence characteristics of multiferroic BiFeO3 thin films prepared by pulsed laser deposition technique. <i>Applied Physics A: Materials Science and Processing</i> , 2013 , 110, 903-907	2.6	39
226	Vibtrational energy harvesting using photo-patternable piezoelectric nanocomposite cantilevers. <i>Nano Energy</i> , 2013 , 2, 923-932	17.1	24
225	Peptide-bacteria interactions using engineered surface-immobilized peptides from class IIa bacteriocins. <i>Langmuir</i> , 2013 , 29, 4048-56	4	27
224	Surface dominant photoresponse of multiferroic BiFeO3 nanowires under sub-bandgap illumination. <i>Nanotechnology</i> , 2013 , 24, 505710	3.4	25
223	The effect of applied electric field on the diameter and size distribution of electrospun Nylon6 nanofibers. <i>Scanning</i> , 2013 , 35, 183-8	1.6	10
222	Detection of biological analytes using nanomechanical infrared spectroscopy with a nanoporous microcantilever 2013 ,		3
221	Multi-modal characterization of nanogram amounts of a photosensitive polymer. <i>Applied Physics Letters</i> , 2013 , 102, 024103	3.4	10
220	Photothermal Cantilever Deflection Spectroscopy. ECS Transactions, 2013, 50, 459-464	1	4
219	Directed self-assembly of proteins into discrete radial patterns. Scientific Reports, 2013, 3, 1923	4.9	12
218	Photocatalytic BiFeO3Nanofibrous Mats for Effective Water Treatment. <i>Journal of Nanotechnology</i> , 2013 , 2013, 1-6	3.5	35
217	Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser. <i>Scientific Reports</i> , 2013 , 3, 1111	4.9	33
216	Ultra violet decomposition of surface adsorbed explosives investigated with infrared standoff spectroscopy. <i>Sensors and Actuators B: Chemical</i> , 2012 , 161, 961-966	8.5	12

215	Applications of subsurface microscopy. <i>Methods in Molecular Biology</i> , 2012 , 926, 331-43	1.4	5
214	Bismuth ferrite clusters induced hydrogel formation in human serum albumin. <i>Chemical Communications</i> , 2012 , 48, 4193-5	5.8	
213	Degradable thermoresponsive nanogels for protein encapsulation and controlled release. <i>Bioconjugate Chemistry</i> , 2012 , 23, 75-83	6.3	81
212	Electroless Deposition of Bismuth Containing Films on Copper and Silver Substrates from KBil4 Solutions. <i>Electrochemical and Solid-State Letters</i> , 2012 , 15, D23		2
211	Visible photothermal deflection spectroscopy using microcantilevers. <i>Sensors and Actuators B: Chemical</i> , 2012 , 169, 222-228	8.5	8
210	Surface enhanced strong visible photoluminescence from one-dimensional multiferroic BiFeO3 nanostructures. <i>Surface Science</i> , 2012 , 606, L83-L86	1.8	44
209	Modeling of Asphaltene Transport and Separation in the Presence of Finite Aggregation Effects in Pressure-Driven Microchannel Flow. <i>Energy & Energy & Energ</i>	4.1	5
208	Nanocrystalline ruthenium oxide dispersed Few Layered Graphene (FLG) nanoflakes as supercapacitor electrodes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 14944		119
207	Photothermal cantilever deflection spectroscopy of a photosensitive polymer. <i>Applied Physics Letters</i> , 2012 , 100, 204103	3.4	8
206	Microcantilever Sensors: Electrochemical Aspects and Biomedical Applications. <i>Modern Aspects of Electrochemistry</i> , 2012 , 127-171		
205	A web of streamers: biofilm formation in a porous microfluidic device. <i>Lab on A Chip</i> , 2012 , 12, 5133-7	7.2	62
204	Critical issues in sensor science to aid food and water safety. ACS Nano, 2012, 6, 4548-56	16.7	79
203	Galvanic and Chemical Deposition of Bismuth Powders from Aqueous Solutions. <i>Journal of the Electrochemical Society</i> , 2012 , 159, D587-D591	3.9	5
202	PumpBrobe photothermal spectroscopy using quantum cascade lasers. <i>Journal Physics D: Applied Physics</i> , 2012 , 45, 125101	3	30
201	Nanomechanical Thermal Analysis of Indium Films Using Silicon Microcantilevers. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 08KB07	1.4	4
200	Parametric energy conversion of thermoacoustic vibrations. <i>Applied Physics Letters</i> , 2012 , 100, 203902	3.4	6
199	Biography of Stuart Lindsay. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 160401	1.8	
198	Nanomechanical Thermal Analysis of Indium Films Using Silicon Microcantilevers. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 08KB07	1.4	6

(2010-2011)

197	Virtual resonance and frequency difference generation by van der Waals interaction. <i>Physical Review Letters</i> , 2011 , 106, 180801	7.4	25	
196	Nanomechanical Thermal Analysis of Photosensitive Polymers. <i>Macromolecules</i> , 2011 , 44, 9661-9665	5.5	13	
195	Standoff imaging of chemicals using IR spectroscopy 2011 ,		10	
194	Optomechanical spectroscopy with broadband interferometric and quantum cascade laser sources. <i>Optics Letters</i> , 2011 , 36, 3251-3	3	8	
193	Xsense: a miniaturised multi-sensor platform for explosives detection 2011,		3	
192	Microcantilever biosensors for chemicals and bioorganisms. <i>Analyst, The</i> , 2011 , 136, 1539-56	5	84	
191	Optical and plasmonic spectroscopy with cantilever shaped materials. <i>Journal Physics D: Applied Physics</i> , 2011 , 44, 445102	3	5	
190	Nanometrology of delignified Populus using mode synthesizing atomic force microscopy. <i>Nanotechnology</i> , 2011 , 22, 465702	3.4	12	
189	New modes for subsurface atomic force microscopy through nanomechanical coupling. <i>Nature Nanotechnology</i> , 2010 , 5, 105-9	28.7	94	
188	DNA separation on surfaces. <i>Applied Physics Letters</i> , 2010 , 97, 033703	3.4	2	
187	Observation of an anomalous mass effect in microcantilever-based biosensing caused by adsorbed DNA. <i>Applied Physics Letters</i> , 2010 , 96, 153703	3.4	17	
186	2010,		2	
185	Highly selective separation of DNA fragments using optically directed transport. <i>Applied Physics Letters</i> , 2010 , 96, 053701	3.4	3	
184	Glucose-responsive polymer brushes for microcantilever sensing. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3391		68	
183	Fluidic applications for atomic force microscopy (AFM) with microcantilever sensors. Experiments in	2.5	24	
	Fluids, 2010 , 48, 721-736			L
182	Pluids, 2010 , 48, 721-736 Quartz crystal tuning fork photoacoustic point sensing. Sensors and Actuators B: Chemical, 2010 , 150, 402-405	8.5	18	
182 181	Quartz crystal tuning fork photoacoustic point sensing. Sensors and Actuators B: Chemical, 2010,		18	

179	Photothermal Sensing of Chemical Vapors Using Microcantilevers. <i>Nanostructure Science and Technology</i> , 2010 , 183-191	0.9	
178	Effects of gold patterning on the bending profile and frequency response of a microcantilever. Journal of Applied Physics, 2009 , 106, 024310	2.5	24
177	Micro-differential thermal analysis detection of adsorbed explosive molecules using microfabricated bridges. <i>Review of Scientific Instruments</i> , 2009 , 80, 035102	1.7	30
176	Nonlinear Interaction Force Analysis of Microcantilevers Utilized in Atomic Force Microscopy 2009 ,		1
175	Room-Temperature Nanocatalytic Reaction Modeling and Its Applications in Direct Energy Conversion. <i>ECS Transactions</i> , 2009 , 16, 61-71	1	2
174	Design & fabrication of cantilever array biosensors. <i>Materials Today</i> , 2009 , 12, 32-38	21.8	86
173	Piezoresistive cantilever array sensor for consolidated bioprocess monitoring. <i>Scanning</i> , 2009 , 31, 204-	1 Q .6	9
172	Stripping voltammetry of Pb and Cu using a microcantilever electrode. Surface Science, 2009, 603, L125	-น1227	6
171	Standoff spectroscopy of surface adsorbed chemicals. <i>Analytical Chemistry</i> , 2009 , 81, 1952-6	7.8	76
170	Laser reflectometry of submegahertz liquid meniscus ringing. <i>Optics Letters</i> , 2009 , 34, 3148-50	3	2
169	Cantilever Sensors: Nanomechanical Tools for Diagnostics. MRS Bulletin, 2009, 34, 449-454	3.2	143
168	Imaging nanoparticles in cells by nanomechanical holography. <i>Nature Nanotechnology</i> , 2008 , 3, 501-5	28.7	133
167	Trace explosive detection using photothermal deflection spectroscopy. <i>Journal of Applied Physics</i> , 2008 , 103, 094906	2.5	70
166	Label-free sugar detection using phenylboronic acid-functionalized piezoresistive microcantilevers. <i>Analytical Chemistry</i> , 2008 , 80, 4860-5	7.8	42
165	Detection of adsorbed explosive molecules using thermal response of suspended microfabricated bridges. <i>Applied Physics Letters</i> , 2008 , 93, 154102	3.4	22
164	Standoff detection of explosive residues using photothermal microcantilevers. <i>Applied Physics Letters</i> , 2008 , 92, 134102	3.4	41
163	Elastic phase response of silica nanoparticles buried in soft matter. <i>Applied Physics Letters</i> , 2008 , 93, 133113	3.4	49
162	Standoff photoacoustic spectroscopy. <i>Applied Physics Letters</i> , 2008 , 92, 234102	3.4	76

161	Measurement of Mechanical Properties of Cantilever Shaped Materials. <i>Sensors</i> , 2008 , 8, 3497-3541	3.8	81
160	Nanosensors for trace explosive detection. <i>Materials Today</i> , 2008 , 11, 28-36	21.8	250
159	Speciation of energetic materials on a microcantilever using surface reduction. <i>Scanning</i> , 2008 , 30, 208-12	26	8
158	Explosive Vapor Detection Using Microcantilever Sensors 2007 , 109-130		3
157	Detection of Cd(II) using antibody-modified microcantilever sensors. <i>Ultramicroscopy</i> , 2007 , 107, 1123-8 3	3.1	32
156	Vibration response of microcantilevers bounded by a confined fluid. <i>Ultramicroscopy</i> , 2007 , 107, 1105-10 ₃	3.1	6
155	Nanomechanics of a self-assembled monolayer on microcantilever sensors measured by a multiple-point deflection technique. <i>Sensors and Actuators B: Chemical</i> , 2007 , 122, 365-368	3.5	27
154	Electromechanical identification of molecules adsorbed on microcantilevers. <i>Sensors and Actuators B: Chemical</i> , 2007 , 124, 143-146	3.5	6
153	An experimental investigation of analog delay generation for dynamic control of microsensors and atomic force microscopy. <i>Ultramicroscopy</i> , 2007 , 107, 1020-6	3.1	1
152	Design and Testing of Single and Double Sided Cantilevers for Chemical Sensing 2007,		4
151	Effect of chain length on nanomechanics of alkanethiol self-assembly. <i>Nanotechnology</i> , 2007 , 18, 424028	3.4	32
150	Frictional Dynamics at the Atomic Scale in Presence of Small Oscillations of the Sliding Surfaces 2007 , 119-130		1
149	Gas sensing using electrostatic force potentiometry. <i>Applied Physics Letters</i> , 2007 , 90, 173105	3.4	23
148	A piezoresistive microcantilever array for surface stress measurement: curvature model and fabrication. <i>Journal of Micromechanics and Microengineering</i> , 2007 , 17, 2065-2076	<u> </u>	23
147	Surface plasmon assisted thermal coupling of multiple photon energies. <i>Thin Solid Films</i> , 2006 , 497, 315-3	} 20	18
146	Effect of nanometer surface morphology on surface stress and adsorption kinetics of alkanethiol self-assembled monolayers. <i>Ultramicroscopy</i> , 2006 , 106, 795-9	3.1	38
145	Microscale Marangoni actuation: all-optical and all-electrical methods. <i>Ultramicroscopy</i> , 2006 , 106, 815-23	ļ.1 	17
144	Nanopowder molding method for creating implantable high-aspect-ratio electrodes on thin flexible substrates. <i>Biomaterials</i> , 2006 , 27, 2009-17	15.6	23

143	Fluctuation and dissipation of a stochastic micro-oscillator under delayed feedback. <i>Journal of Applied Physics</i> , 2006 , 100, 114314	2.5	6
142	Optically directed molecular transport and 3D isoelectric positioning of amphoteric biomolecules. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 6436-41	11.5	11
141	Effect of normal vibration on friction in the atomic force microscopy experiment. <i>Applied Physics Letters</i> , 2006 , 88, 214102	3.4	30
140	Spiral springs and microspiral springs for chemical and biological sensing. <i>Applied Physics Letters</i> , 2006 , 88, 063504	3.4	3
139	Remote chemical sensing and recognition by acoustic mapping of photothermal fields. <i>Applied Physics Letters</i> , 2006 , 88, 194103	3.4	
138	Influence of nanobubbles on the bending of microcantilevers. <i>Applied Physics Letters</i> , 2006 , 88, 103118	3.4	17
137	Explosive Vapor Detection Using Microcantilever Sensors 2006 , 245-260		2
136	Nanoscale Energy Conversion by Using Nano-Catalytic Particles 2006 , 545		
135	Microcantilever (MCL) Biosensing. Current Analytical Chemistry, 2006, 2, 297-307	1.7	21
134	Nanotechnologies for biomolecular detection and medical diagnostics. <i>Current Opinion in Chemical Biology</i> , 2006 , 10, 11-9	9.7	408
133	Photothermal spectroscopy of Bacillus anthracis and Bacillus cereus with microcantilevers. <i>Sensors and Actuators B: Chemical</i> , 2006 , 114, 206-211	8.5	46
132	Bioelectromechanical imaging by scanning probe microscopy: Galvani's experiment at the nanoscale. <i>Ultramicroscopy</i> , 2006 , 106, 334-40	3.1	62
131	Effective mass and flow patterns of fluids surrounding microcantilevers. <i>Ultramicroscopy</i> , 2006 , 106, 789-94	3.1	10
130	Cantilever Arrays: A Universal Platform for Multiplexed Label-Free Bioassays 2006 , 21-33		
129	Moore's law in homeland defense: an integrated sensor platform based on silicon microcantilevers. <i>IEEE Sensors Journal</i> , 2005 , 5, 774-785	4	53
128	1,6-Hexanedithiol monolayer as a receptor for specific recognition of alkylmercury. <i>Analyst, The</i> , 2005 , 130, 1577-9	5	17
127	Locally enhanced relative humidity for scanning probe nanolithography. <i>Langmuir</i> , 2005 , 21, 10902-6	4	9
126	Nanocatalytic Spontaneous Ignition and Self-Supporting Room-Temperature Combustion. <i>Energy</i> & amp; Fuels, 2005 , 19, 855-858	4.1	37

(2004-2005)

125	Photochemical hydrosilylation of 11-undecenyltriethylammonium bromide with hydrogen-terminated Si surfaces for the development of robust microcantilever sensors for Cr(VI). <i>Langmuir</i> , 2005 , 21, 1139-42	4	23
124	Dynamic microcantilever sensors for discerning biomolecular interactions. <i>Analytical Chemistry</i> , 2005 , 77, 1601-6	7.8	31
123	Modulation of multiple photon energies by use of surface plasmons. <i>Optics Letters</i> , 2005 , 30, 41-3	3	29
122	Marangoni forces created by surface plasmon decay. <i>Optics Letters</i> , 2005 , 30, 616-8	3	31
121	Microcantilever biosensors. <i>Methods</i> , 2005 , 37, 57-64	4.6	169
120	Simulation of adsorption-induced stress of a microcantilever sensor. <i>Journal of Applied Physics</i> , 2005 , 97, 043526	2.5	70
119	Environmental Monitoring Using Microcantilever Sensors. ACS Symposium Series, 2005, 284-305	0.4	2
118	Modal analysis of microcantilever sensors with environmental damping. <i>Journal of Applied Physics</i> , 2005 , 97, 084902	2.5	29
117	Piezoelectric self-sensing of adsorption-induced microcantilever bending. <i>Sensors and Actuators A: Physical</i> , 2005 , 121, 457-461	3.9	20
116	Optical modulation processes in thin films based on thermal effects of surface plasmons. <i>Applied Physics Letters</i> , 2005 , 86, 154101	3.4	52
115	Synthesis, characterization, and optical properties of AuSe nanoalloys. <i>Journal of Nanoscience and Nanotechnology</i> , 2005 , 5, 1832-9	1.3	5
114	Photon tunneling via surface plasmon coupling. <i>Applied Physics Letters</i> , 2004 , 85, 3420-3422	3.4	16
113	Instant curvature measurement for microcantilever sensors. <i>Applied Physics Letters</i> , 2004 , 85, 1083-108	3 4 3.4	29
112	Torsional spring constant obtained for an atomic force microscope cantilever. <i>Applied Physics Letters</i> , 2004 , 84, 1795-1797	3.4	21
111	Opto-electronic versus electro-optic modulation. <i>Applied Physics Letters</i> , 2004 , 85, 2703-2705	3.4	9
110	Detection of trinitrotoluene via deflagration on a microcantilever. <i>Journal of Applied Physics</i> , 2004 , 95, 5871-5875	2.5	77
109	Effect of thermal variations on the Knudsen forces in the transitional regime. <i>Applied Physics Letters</i> , 2004 , 84, 1013-1015	3.4	26
108	Cross talk between bending, twisting, and buckling modes of three types of microcantilever sensors. <i>Review of Scientific Instruments</i> , 2004 , 75, 4841-4844	1.7	14

107	Calibration of optical cantilever deflection readers. Review of Scientific Instruments, 2004, 75, 400-404	1.7	23
106	Molecular recognition of biowarfare agents using micromechanical sensors. <i>Expert Review of Molecular Diagnostics</i> , 2004 , 4, 859-66	3.8	30
105	Adsorption of trinitrotoluene on uncoated silicon microcantilever surfaces. <i>Langmuir</i> , 2004 , 20, 2690-4	4	41
104	Detection of 2,4-dinitrotoluene using microcantilever sensors. <i>Sensors and Actuators B: Chemical</i> , 2004 , 99, 223-229	8.5	96
103	Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy. <i>Ultramicroscopy</i> , 2004 , 100, 429-36	3.1	20
102	Observation of the surface stress induced in microcantilevers by electrochemical redox processes. <i>Ultramicroscopy</i> , 2004 , 100, 217-23	3.1	32
101	Desorption characteristics of uncoated silicon microcantilever surfaces for explosive and common nonexplosive vapors. <i>Ultramicroscopy</i> , 2004 , 100, 211-6	3.1	35
100	Explosive Vapour Detection Using Micromechanical Sensors. <i>NATO Science Series Series II, Mathematics, Physics and Chemistry</i> , 2004 , 249-266		2
99	Photon-driven nanomechanical cyclic motion. <i>Chemical Communications</i> , 2004 , 2532-3	5.8	23
98	Microfluidic manipulation via Marangoni forces. <i>Applied Physics Letters</i> , 2004 , 85, 4237-4239	3.4	73
97	Optical thin-film interference effects in microcantilevers. <i>Journal of Applied Physics</i> , 2004 , 95, 1162-116	52.5	15
96	A sensitive, handheld vapor sensor based on microcantilevers. <i>Review of Scientific Instruments</i> , 2004 , 75, 4554-4557	1.7	50
95	Detection of femtomolar concentrations of HF Using an SiO(2) microcantilever. <i>Analytical Chemistry</i> , 2004 , 76, 2478-81	7.8	49
94	Synthesis of selenium nanoparticle and its photocatalytic application for decolorization of methylene blue under UV irradiation. <i>Langmuir</i> , 2004 , 20, 7880-3	4	68
93	Detection of Organophosphates Using an Acetyl Cholinesterase (AChE) Coated Microcantilever. <i>Instrumentation Science and Technology</i> , 2004 , 32, 175-183	1.4	16
92	Glucose biosensor based on the microcantilever. <i>Analytical Chemistry</i> , 2004 , 76, 292-7	7.8	252
91	Detection of Hexavalent Chromium in Ground Water Using a Single Microcantilever Sensor. <i>Sensor Letters</i> , 2004 , 2, 25-30	0.9	8
90	Explosive Vapour Detection Using Micromechanical Sensors 2004 , 249-266		1

(2003-2003)

89	Novel Glucose Biosensor Based on the Microcantilever. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 776, 11211		4
88	Effects of temperature and pressure on microcantilever resonance response. <i>Ultramicroscopy</i> , 2003 , 97, 119-26	3.1	7 ²
87	Manipulation of microcantilever oscillations. <i>Ultramicroscopy</i> , 2003 , 97, 391-9	3.1	21
86	Observation of Knudsen effect with microcantilevers. <i>Ultramicroscopy</i> , 2003 , 97, 401-6	3.1	33
85	Adsorption-desorption characteristics of explosive vapors investigated with microcantilevers. <i>Ultramicroscopy</i> , 2003 , 97, 433-9	3.1	46
84	Detection of heavy metal ions using protein-functionalized microcantilever sensors. <i>Biosensors and Bioelectronics</i> , 2003 , 19, 411-6	11.8	79
83	Explosives: a microsensor for trinitrotoluene vapour. <i>Nature</i> , 2003 , 425, 474	50.4	153
82	Mercury vapor detection with a self-sensing, resonating piezoelectric cantilever. <i>Review of Scientific Instruments</i> , 2003 , 74, 4899-4901	1.7	79
81	A general microcantilever surface modification method using a multilayer for biospecific recognition. <i>Organic and Biomolecular Chemistry</i> , 2003 , 1, 460-2	3.9	18
80	Nerve agents detection using a Cu2+/L-cysteine bilayer-coated microcantilever. <i>Journal of the American Chemical Society</i> , 2003 , 125, 1124-5	16.4	138
79	Oriented Nanostructures from Single Molecules of a Semiconducting Polymer: Polarization Evidence for Highly Aligned Intramolecular Geometries. <i>Nano Letters</i> , 2003 , 3, 603-607	11.5	45
78	Discerning Biomolecular Interactions Using Kelvin Probe Technology. <i>Langmuir</i> , 2003 , 19, 7514-7520	4	29
77	Detection of CrO4(2-) using a hydrogel swelling microcantilever sensor. <i>Analytical Chemistry</i> , 2003 , 75, 4773-7	7.8	96
76	Use of Microcantilevers for the Monitoring of Molecular Binding to Self-Assembled Monolayers. <i>Langmuir</i> , 2003 , 19, 7841-7844	4	31
75	Size-correlated spectroscopy and imaging of rare-earth-doped nanocrystals. <i>Applied Optics</i> , 2003 , 42, 2132-9	1.7	33
74	Piezoresistive detection of acoustic waves. <i>Review of Scientific Instruments</i> , 2003 , 74, 1031-1035	1.7	15
73	Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers. <i>Applied Physics Letters</i> , 2003 , 83, 1471-1473	3.4	162
72	Microcantilevers for Physical, Chemical, and Biological Sensing 2003, 337-355		4

71	In situ detection of calcium ions with chemically modified microcantilevers. <i>Biosensors and Bioelectronics</i> , 2002 , 17, 337-43	11.8	60
70	An atomic force microscope-based investigation of vertical transport through GaAs/GaAlAs/InAlAs/GaAs step-barrier heterostructures. <i>Ultramicroscopy</i> , 2002 , 91, 133-8	3.1	3
69	Observation of dipolar emission patterns from isolated Eu3+:Y2O3 doped nanocrystals: new evidence for single ion luminescence. <i>Chemical Physics Letters</i> , 2002 , 358, 459-465	2.5	62
68	Mass Spectrometric Analysis of Water-soluble Gold Nanoclusters. <i>Journal of Nanoparticle Research</i> , 2002 , 4, 417-422	2.3	5
67	Knudsen forces on microcantilevers. <i>Journal of Applied Physics</i> , 2002 , 92, 6326-6333	2.5	51
66	Determination of adsorption-induced variation in the spring constant of a microcantilever. <i>Applied Physics Letters</i> , 2002 , 80, 2219-2221	3.4	78
65	Glucose biosensing using an enzyme-coated microcantilever. <i>Applied Physics Letters</i> , 2002 , 81, 385-387	3.4	84
64	Microcantilever charged-particle flux detector. Review of Scientific Instruments, 2002, 73, 36-41	1.7	17
63	Dynamics of self-driven microcantilevers. <i>Journal of Applied Physics</i> , 2002 , 91, 4693-4700	2.5	18
62	Covalent attachment of gold nanoparticles to DNA templates. <i>Journal of Nanoscience and Nanotechnology</i> , 2002 , 2, 397-404	1.3	19
61	Detection of Hg2+ using microcantilever sensors. <i>Analytical Chemistry</i> , 2002 , 74, 3611-5	7.8	83
60	Nanomechanical Effect of Enzymatic Manipulation of DNA on Microcantilever Surfaces. <i>Langmuir</i> , 2002 , 18, 8732-8736	4	36
59	Investigating the Mechanical Effects of Adsorption of Ca2+ Ions on a Silicon Nitride Microcantilever Surface. <i>Langmuir</i> , 2002 , 18, 6935-6939	4	31
58	Assembly of Gold Nanoclusters on Silicon Surfaces. <i>Langmuir</i> , 2002 , 18, 2392-2397	4	10
57	Nanocantilever signal transduction by electron transfer. <i>Journal of Nanoscience and Nanotechnology</i> , 2002 , 2, 369-73	1.3	10
56	Measuring magnetic susceptibilities of nanogram quantities of materials using microcantilevers. <i>Ultramicroscopy</i> , 2001 , 86, 175-80	3.1	20
55	Detection of pH variation using modified microcantilever sensors. <i>Sensors and Actuators B: Chemical</i> , 2001 , 72, 233-238	8.5	69
54	Study of different hormone-sensitive lipase concentrations using a surface plasmon resonance sensor. <i>Sensors and Actuators B: Chemical</i> , 2001 , 73, 192-198	8.5	4

53	Bioassay of prostate-specific antigen (PSA) using microcantilevers. <i>Nature Biotechnology</i> , 2001 , 19, 856	- 6/1 .5	836
52	Analysis of amplification of thermal vibrations of a microcantilever. <i>Journal of Applied Physics</i> , 2001 , 89, 4587-4591	2.5	18
51	Manipulation and controlled amplification of Brownian motion of microcantilever sensors. <i>Applied Physics Letters</i> , 2001 , 78, 1637-1639	3.4	68
50	Investigation of adsorption and absorption-induced stresses using microcantilever sensors. <i>Journal of Applied Physics</i> , 2001 , 90, 427-431	2.5	95
49	Ultrasensitive detection of CrO4(2-) using a microcantilever sensor. <i>Analytical Chemistry</i> , 2001 , 73, 1572	2-5 .8	83
48	Electrostatic force density for a scanned probe above a charged surface. <i>Journal of Applied Physics</i> , 2001 , 90, 1011-1016	2.5	5
47	Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. <i>Analytical Chemistry</i> , 2001 , 73, 1567-71	7.8	300
46	Site-Specific Attachment of Gold Nanoparticles to DNA Templates. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 635, C4.2.1		1
45	Origin of nanomechanical cantilever motion generated from biomolecular interactions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2001 , 98, 1560-4	11.5	187
44	A novel self-assembled monolayer (SAM) coated microcantilever for low level caesium detection. <i>Chemical Communications</i> , 2000 , 457-458	5.8	97
43	Polymer-Mediated Assembly of Gold Nanoclusters. <i>Langmuir</i> , 2000 , 16, 9151-9154	4	21
42	Nanostrings of silver. <i>Journal of Materials Science Letters</i> , 1999 , 18, 1391-1394		4
41	Monitoring chemical and physical changes on sub-nanogram quantities of platinum dioxide. <i>Surface Science</i> , 1999 , 430, L546-L552	1.8	19
40	MEMS sensors and wireless telemetry for distributed systems 1998,		8
39	MICROCANTILEVER SENSORS. Microscale Thermophysical Engineering, 1997, 1, 185-199		181
38	Mapping individual cosmid DNAs by direct AFM imaging. <i>Genomics</i> , 1997 , 41, 379-84	4.3	40
37	Viscous drag measurements utilizing microfabricated cantilevers. <i>Applied Physics Letters</i> , 1996 , 68, 381	4 - 38∤16	140
36	Direct atomic force microscope imaging of EcoRI endonuclease site specifically bound to plasmid DNA molecules. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1996 , 93, 8826-9	11.5	55

35	AFM and RHEED study of Ge islanding on Si(111) and Si(100). <i>Applied Surface Science</i> , 1996 , 104-105, 510-515	6.7	32
34	Vapor Detection Using Resonating Microcantilevers. <i>Analytical Chemistry</i> , 1995 , 67, 519-521	7.8	174
33	Harmonic response of near-contact scanning force microscopy. Journal of Applied Physics, 1995, 78, 14	652.1546	9 65
32	Micromechanical sensors for chemical and physical measurements. <i>Review of Scientific Instruments</i> , 1995 , 66, 3662-3667	1.7	108
31	Surface morphology of epitaxial CaF2/Si(111) and its influence on subsequent GaAs epitaxy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1995, 13, 670		6
30	Growth mechanisms and defects in boronated CVD diamond as identified by scanning tunneling microscopy. <i>Physical Review B</i> , 1995 , 51, 14554-14558	3.3	13
29	Step Instabilities: A New Kinetic Route to 3D Growth. <i>Physical Review Letters</i> , 1995 , 75, 1582-1585	7.4	34
28	Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. <i>Journal of Applied Physics</i> , 1995 , 77, 3618-3622	2.5	440
27	Localized heating of nickel nitride/aluminum nitride nanocomposite films for data storage. <i>Applied Physics Letters</i> , 1995 , 67, 3034-3036	3.4	22
26	Smooth polycrystalline ceramic substrates with enhanced metal adhesion by pulsed excimer laser processing. <i>Applied Physics Letters</i> , 1994 , 64, 1791-1793	3.4	15
25	Diffusion length of Ga adatoms on GaAs (1 1 1) surface in the 🗓 9 🗓 9 reconstruction growth regime. <i>Applied Physics Letters</i> , 1994 , 64, 1641-1643	3.4	4
24	Friction effects in the deflection of atomic force microscope cantilevers. <i>Review of Scientific Instruments</i> , 1994 , 65, 394-399	1.7	96
23	Experimental observations of a long-range surface mode in metal island films. <i>Physical Review B</i> , 1994 , 49, 7782-7785	3.3	8
22	Stretched DNA structures observed with atomic force microscopy. <i>Nucleic Acids Research</i> , 1994 , 22, 42	.2 4:8 .1	100
21	Resonance response of scanning force microscopy cantilevers. <i>Review of Scientific Instruments</i> , 1994 , 65, 2532-2537	1.7	212
20	Thermal and ambient-induced deflections of scanning force microscope cantilevers. <i>Applied Physics Letters</i> , 1994 , 64, 2894-2896	3.4	334
19	Atomic layer-by-layer surface removal by force microscopy. Surface Science, 1993 , 293, L863-L869	1.8	12
18	Atomic force microscope investigation of C60 adsorbed on silicon and mica. <i>Applied Physics Letters</i> , 1993 , 63, 891-893	3.4	60

LIST OF PUBLICATIONS

17	Characterization of atomic force microscope tips by adhesion force measurements. <i>Applied Physics Letters</i> , 1993 , 63, 2150-2152	3.4	54	
16	Polybutadiene emulsion particles observed by scanning tunneling microscopy. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1992 , 10, 623-626	2.9	5	
15	Superperiodic features observed on graphite under solution with scanning tunneling microscopy. <i>Surface Science Letters</i> , 1991 , 254, L454-L459		1	
14	Gold grown epitaxially on mica: conditions for large area flat faces. Surface Science, 1991 , 256, 102-108	1.8	217	
13	Electrochemical deposition of molecular adsorbates for in situ scanning probe microscopy. <i>Ultramicroscopy</i> , 1990 , 33, 107-16	3.1	24	
12	Electrical, spectroscopic, and morphological investigation of chromium diffusion through gold films. <i>Thin Solid Films</i> , 1990 , 189, 59-72	2.2	31	
11	Nanolithography on semiconductor surfaces under an etching solution. <i>Applied Physics Letters</i> , 1990 , 57, 270-272	3.4	85	
10	Electrochemically deposited Ni on Ge(111) investigated with X-ray standing waves. <i>Surface Science</i> , 1990 , 230, 205-212	1.8	3	
9	Sequence, packing and nanometer scale structure in STM images of nucleic acids under water. Journal of Biomolecular Structure and Dynamics, 1989 , 7, 289-99	3.6	23	
8	STM and AFM images of nucleosome DNA under water. <i>Journal of Biomolecular Structure and Dynamics</i> , 1989 , 7, 279-87	3.6	76	
7	Preparation and characterization of STM tips for electrochemical studies. <i>Review of Scientific Instruments</i> , 1989 , 60, 3128-3130	1.7	221	
6	Tip-bias induced surface modification on gold surfaces. <i>Journal of Microscopy</i> , 1988 , 152, 145-147	1.9	14	
5	Investigation of mercury adsorption on gold films by STM. <i>Journal of Microscopy</i> , 1988 , 152, 703-713	1.9	19	
4	Chemisorption of bromine on cleaved silicon (111) surfaces: An X-ray standing wave interference spectrometric analysis. <i>Surface Science</i> , 1985 , 163, 457-477	1.8	37	
3	Nanomechanical Methods To Study Single Cells245-265			
2	Ultrathin Palladium Nanowires for Fast and Hysteresis-Free H2 Sensing. ACS Applied Nano Materials,	5.6	3	
1	Pd Alloy Nanosheet Inks for Inkjet-Printable H 2 Sensors on Paper. <i>Advanced Materials Interfaces</i> ,22003	63 .6	1	