Edward Gilding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8004326/publications.pdf

Version: 2024-02-01

43 papers

1,965 citations

304743 22 h-index 254184 43 g-index

46 all docs

46 docs citations

46 times ranked

2713 citing authors

#	Article	IF	CITATIONS
1	Comparative analysis of cyclotide-producing plant cell suspensions presents opportunities for cyclotide plant molecular farming. Phytochemistry, 2022, 195, 113053.	2.9	4
2	Rational domestication of a plant-based recombinant expression system expands its biosynthetic range. Journal of Experimental Botany, 2022, 73, 6103-6114.	4.8	5
3	Neurotoxic and cytotoxic peptides underlie the painful stings of the tree nettle Urtica ferox. Journal of Biological Chemistry, 2022, 298, 102218.	3.4	5
4	Bioactive Cyclization Optimizes the Affinity of a Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Peptide Inhibitor. Journal of Medicinal Chemistry, 2021, 64, 2523-2533.	6.4	14
5	In Planta Discovery and Chemical Synthesis of Bracelet Cystine Knot Peptides from <i>Rinorea bengalensis</i> . Journal of Natural Products, 2021, 84, 395-407.	3.0	7
6	Tracking seasonal changes in diversity of pollen allergen exposure: Targeted metabarcoding of a subtropical aerobiome. Science of the Total Environment, 2020, 747, 141189.	8.0	23
7	Make it or break it: Plant AEPs on stage in biotechnology. Biotechnology Advances, 2020, 45, 107651.	11.7	19
8	Neurotoxic peptides from the venom of the giant Australian stinging tree. Science Advances, 2020, 6, .	10.3	16
9	Production of a structurally validated cyclotide in rice suspension cells is enabled by a supporting biosynthetic enzyme. Planta, 2020, 252, 97.	3.2	6
10	Discovery and mechanistic studies of cytotoxic cyclotides from the medicinal herb Hybanthus enneaspermus. Journal of Biological Chemistry, 2020, 295, 10911-10925.	3.4	22
11	Circular Permutation of the Native Enzyme-Mediated Cyclization Position in Cyclotides. ACS Chemical Biology, 2020, 15, 962-969.	3.4	7
12	A bifunctional asparaginyl endopeptidase efficiently catalyzes both cleavage and cyclization of cyclic trypsin inhibitors. Nature Communications, 2020, 11 , 1575 .	12.8	61
13	Insecticidal diversity of butterfly pea (Clitoria ternatea) accessions. Industrial Crops and Products, 2020, 147, 112214.	5.2	15
14	The Rapid Regenerative Response of a Model Sea Anemone Species Exaiptasia pallida Is Characterised by Tissue Plasticity and Highly Coordinated Cell Communication. Marine Biotechnology, 2020, 22, 285-307.	2.4	12
15	The Role of Pullulanase in Starch Biosynthesis, Structure, and Thermal Properties by Studying Sorghum with Increased Pullulanase Activity. Starch/Staerke, 2019, 71, 1900072.	2.1	9
16	A suite of kinetically superior AEP ligases can cyclise an intrinsically disordered protein. Scientific Reports, 2019, 9, 10820.	3.3	47
17	Butterfly Pea (Clitoria ternatea), a Cyclotide-Bearing Plant With Applications in Agriculture and Medicine. Frontiers in Plant Science, 2019, 10, 645.	3.6	88
18	Rapid and Scalable Plant-Based Production of a Potent Plasmin Inhibitor Peptide. Frontiers in Plant Science, 2019, 10, 602.	3.6	24

#	Article	IF	Citations
19	Papain-like cysteine proteases prepare plant cyclic peptide precursors for cyclization. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7831-7836.	7.1	44
20	Increasing protein content and digestibility in sorghum grain with a synthetic biology approach. Journal of Cereal Science, 2019, 85, 27-34.	3.7	19
21	Co-expression of a cyclizing asparaginyl endopeptidase enables efficient production of cyclic peptides in planta. Journal of Experimental Botany, 2018, 69, 633-641.	4.8	53
22	Molecular basis for the production of cyclic peptides by plant asparaginyl endopeptidases. Nature Communications, 2018, 9, 2411.	12.8	99
23	The functionality of α-kafirin promoter and α-kafirin signal peptide. Plant Cell, Tissue and Organ Culture, 2017, 128, 133-143.	2.3	6
24	Domestication and the storage starch biosynthesis pathway: signatures of selection from a whole sorghum genome sequencing strategy. Plant Biotechnology Journal, 2016, 14, 2240-2253.	8.3	38
25	Gene coevolution and regulation lock cyclic plant defence peptides to their targets. New Phytologist, 2016, 210, 717-730.	7.3	58
26	Cyclotides in a Biotechnological Context. Advances in Botanical Research, 2015, , 305-333.	1.1	4
27	Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase. Nature Communications, 2015, 6, 10199.	12.8	186
28	Proposed Systematic Nomenclature for Orbitides. Journal of Natural Products, 2015, 78, 645-652.	3.0	44
29	A robust tissue culture system for sorghum [Sorghum bicolor (L.) Moench]. South African Journal of Botany, 2015, 98, 157-160.	2.5	32
30	Total transcriptome, proteome, and allergome of Johnson grass pollen, which is important for allergic rhinitis in subtropical regions. Journal of Allergy and Clinical Immunology, 2015, 135, 133-142.	2.9	36
31	The plasticity of NBS resistance genes in sorghum is driven by multiple evolutionary processes. BMC Plant Biology, 2014, 14, 253.	3.6	49
32	Impacts of Kafirin Allelic Diversity, Starch Content, and Protein Digestibility on Ethanol Conversion Efficiency in Grain Sorghum. Cereal Chemistry, 2014, 91, 218-227.	2.2	24
33	Grain Sorghum Proteomics: Integrated Approach toward Characterization of Endosperm Storage Proteins in Kafirin Allelic Variants. Journal of Agricultural and Food Chemistry, 2014, 62, 9819-9831.	5.2	40
34	Assembly and annotation of a non-model gastropod (Nerita melanotragus) transcriptome: a comparison of De novo assemblers. BMC Research Notes, 2014, 7, 488.	1.4	27
35	Whole-genome sequencing reveals untapped genetic potential in Africa's indigenous cereal crop sorghum. Nature Communications, 2013, 4, 2320.	12.8	405
36	Allelic variation at a single gene increases food value in a drought-tolerant staple cereal. Nature Communications, 2013, 4, 1483.	12.8	41

#	Article	IF	CITATION
37	Additive effects of three auxins and copper on sorghum in vitro root induction. In Vitro Cellular and Developmental Biology - Plant, 2013, 49, 191-197.	2.1	9
38	Lack of Low Frequency Variants Masks Patterns of Non-Neutral Evolution following Domestication. PLoS ONE, 2011, 6, e23041.	2.5	17
39	Analysis of purified glabra3-shapeshifter trichomes reveals a role for NOECK in regulating early trichome morphogenic events. Plant Journal, 2010, 64, 304-317.	5.7	56
40	Transcriptome Analysis of Arabidopsis Wild-Type and gl3–sst sim Trichomes Identifies Four Additional Genes Required for Trichome Development. Molecular Plant, 2009, 2, 803-822.	8.3	146
41	Overexpression of the maize Teosinte Branched1 gene in wheat suppresses tiller development. Plant Cell Reports, 2008, 27, 1217-1225.	5.6	61
42	A new method for isolating large quantities of Arabidopsis trichomes for transcriptome, cell wall and other types of analyses. Plant Journal, 2008, 56, 483-492.	5.7	72
43	Genetic interaction between <i>glabra3â€shapeshifter</i> and <i>siamese</i> in <i>Arabidopsis thaliana</i> converts trichome precursors into cells with meristematic activity. Plant Journal, 2007, 52, 352-361.	5.7	13