
Seungwoo Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8004116/publications.pdf Version: 2024-02-01

SELINGWOO HAN

#	Article	IF	CITATIONS
1	Optimal design for micro-thermoelectric generators using finite element analysis. Microelectronic Engineering, 2011, 88, 775-778.	2.4	85
2	Liquid-metal-electrode-based compact, flexible, and high-power thermoelectric device. Energy, 2019, 188, 116019.	8.8	55
3	High power output from body heat harvesting based on flexible thermoelectric system with low thermal contact resistance. Journal Physics D: Applied Physics, 2018, 51, 365501.	2.8	44
4	Thermoelectric properties of n-type Bi–Te thin films with deposition conditions using RF magnetron co-sputtering. Thermochimica Acta, 2012, 542, 57-61.	2.7	29
5	Thickness dependence of the electrical and thermoelectric properties of co-evaporated Sb2Te3 films. Applied Surface Science, 2018, 429, 115-120.	6.1	27
6	Optimization and fabrication of a planar thermoelectric generator for a high-performance solar thermoelectric generator. Current Applied Physics, 2021, 22, 6-13.	2.4	20
7	Tailoring nanostructured NbCoSn-based thermoelectric materials via crystallization of an amorphous precursor. Nano Energy, 2021, 80, 105518.	16.0	19
8	Flexible Thermoelectric Module Using Bi-Te and Sb-Te Thin Films for Temperature Sensors. Journal of Electronic Materials, 2019, 48, 5464-5470.	2.2	14
9	Preparation and thermoelectric properties of annealed CoSb and CoSb 2 thin films deposited through RF co-sputtering. Journal of Alloys and Compounds, 2016, 686, 540-548.	5.5	13
10	Thickness effects on the microstructure and electrical/thermoelectric properties of co-evaporated Bi-Te thin films. Journal of Alloys and Compounds, 2018, 767, 522-527.	5.5	13
11	Thermoelectric properties of cobalt–antimonide thin films prepared by radio frequency co-sputtering. Thin Solid Films, 2015, 587, 150-155.	1.8	12
12	Effect of Sb content on the thermoelectric properties of annealed CoSb 3 thin films deposited via RF co-sputtering. Applied Surface Science, 2017, 408, 88-95.	6.1	10
13	Effect of heating cycle on cobalt-antimonide-based thin films for high-temperature thermoelectric energy conversion applications. Journal of Alloys and Compounds, 2019, 790, 577-586.	5.5	8
14	Preparation and thermoelectric properties of RF co-sputtered CoSb3 skutteruddite thin films. Journal of the Korean Physical Society, 2014, 65, 1614-1618.	0.7	6
15	Optimizing the Structural, Electrical and Thermoelectric Properties of Antimony Telluride Thin Films Deposited on Aluminum Nitride-coated Stainless Steel Foil. Scientific Reports, 2020, 10, 6978.	3.3	5
16	Design and performance analyses of thermoelectric coolers and power generators for automobiles. Sustainable Energy Technologies and Assessments, 2022, 51, 101955.	2.7	5
17	Fabrication, micro-structure characteristics and transport properties of co-evaporated thin films of Bi2Te3 on AlN coated stainless steel foils. Scientific Reports, 2021, 11, 4041.	3.3	4
18	Thermal Cycling Behavior of Zinc Antimonide Thin Films for High Temperature Thermoelectric Power Generation Applications. ACS Applied Materials & Interfaces, 2015, 7, 17866-17873.	8.0	3

#	Article	IF	CITATIONS
19	Substrate effects on the thermoelectric properties of Co-sputtered Bi-Te thin films for micro-thermoelectric devices. Journal of the Korean Physical Society, 2012, 61, 1435-1438.	0.7	1