Alan C Rapraeger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8003955/publications.pdf

Version: 2024-02-01

22 papers 1,941 citations

19 h-index 677142 22 g-index

24 all docs

24 docs citations

times ranked

24

1859 citing authors

#	Article	IF	CITATIONS
1	Plasma membrane proteoglycans syndecan-2 and syndecan-4 engage with EGFR and RON kinase to sustainÂcarcinoma cell cycle progression. Journal of Biological Chemistry, 2022, 298, 102029.	3.4	4
2	Syndecans and Their Synstatins: Targeting an Organizer of Receptor Tyrosine Kinase Signaling at the Cell-Matrix Interface. Frontiers in Oncology, 2021, 11, 775349.	2.8	10
3	The Specificity of EGF-Stimulated IQGAP1 Scaffold Towards the PI3K-Akt Pathway is Defined by the IQ3 motif. Scientific Reports, 2019, 9, 9126.	3.3	26
4	VLA-4 phosphorylation during tumor and immune cell migration relies on its coupling to VEGFR2 and CXCR4 by syndecan-1. Journal of Cell Science, 2019, 132, .	2.0	13
5	Heparanase regulation of cancer, autophagy and inflammation: new mechanisms and targets for therapy. FEBS Journal, 2017, 284, 42-55.	4.7	182
6	Syndecan-1 (CD138) Suppresses Apoptosis in Multiple Myeloma by Activating IGF1 Receptor: Prevention by SynstatinIGF1R Inhibits Tumor Growth. Cancer Research, 2016, 76, 4981-4993.	0.9	48
7	Syndecan-1 and Syndecan-4 Capture Epidermal Growth Factor Receptor Family Members and the $\hat{1}\pm3\hat{1}^21$ Integrin Via Binding Sites in Their Ectodomains. Journal of Biological Chemistry, 2015, 290, 26103-26113.	3.4	58
8	Cytoplasmic Domain Interactions of Syndecan-1 and Syndecan-4 with $\hat{l}\pm6\hat{l}^24$ Integrin Mediate Human Epidermal Growth Factor Receptor (HER1 and HER2)-dependent Motility and Survival. Journal of Biological Chemistry, 2014, 289, 30318-30332.	3.4	56
9	Vascular endothelialâ€cadherin stimulates syndecanâ€1â€coupled insulinâ€like growth factorâ€1 receptor and crossâ€talk between α <scp>V</scp> β3 integrin and vascular endothelial growth factor receptor 2 at the onset of endothelial cell dissemination during angiogenesis. FEBS Journal, 2013, 280, 2194-2206.	4.7	70
10	Synstatin: a selective inhibitor of the syndecanâ€lâ€coupled <scp>IGF</scp> 1 <scp>R</scp> â€"αvβ3 integrin complex in tumorigenesis and angiogenesis. FEBS Journal, 2013, 280, 2207-2215.	4.7	96
11	Transmembrane and Extracellular Domains of Syndecan-1 Have Distinct Functions in Regulating Lung Epithelial Migration and Adhesion. Journal of Biological Chemistry, 2012, 287, 34927-34935.	3.4	29
12	Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood, 2010, 115, 2449-2457.	1.4	198
13	Interaction of Syndecan and $\hat{l}\pm6\hat{l}^24$ Integrin Cytoplasmic Domains. Journal of Biological Chemistry, 2010, 285, 13569-13579.	3.4	62
14	Syndecan-1 couples the insulin-like growth factor-1 receptor to inside-out integrin activation. Journal of Cell Science, 2010, 123, 3796-3807.	2.0	104
15	Syndecan-1 regulates $\hat{l}\pm v\hat{l}^2$ 3 and $\hat{l}\pm v\hat{l}^2$ 5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor. Journal of Experimental Medicine, 2009, 206, 691-705.	8.5	249
16	Syndecan-1 regulates $\hat{l}\pm v\hat{l}^2$ 5 integrin activity in B82L fibroblasts. Journal of Cell Science, 2006, 119, 2445-2456.	2.0	97
17	The syndecan-1 ectodomain regulates $\hat{l}\pm v\hat{l}^23$ integrin activity in human mammary carcinoma cells. Journal of Cell Biology, 2004, 167, 171-181.	5. 2	217
18	Syndecan-1-mediated cell spreading requires signaling by $\hat{l}\pm v\hat{l}^23$ integrins in human breast carcinoma cells. Experimental Cell Research, 2003, 286, 219-232.	2.6	136

#	Article	IF	CITATION
19	Differential ability of heparan sulfate proteoglycans to assemble the fibroblast growth factor receptor complex <i>in situ</i> : FASEB Journal, 2000, 14, 137-144.	0.5	102
20	Tyrosine Phosphorylation of Syndecan-1 and -4 Cytoplasmic Domains in Adherent B82 Fibroblasts. Journal of Biological Chemistry, 1998, 273, 35291-35298.	3.4	59
21	Characterization of the High Affinity Cell-binding Domain in the Cell Surface Proteoglycan Syndecan-4. Journal of Biological Chemistry, 1998, 273, 28270-28276.	3.4	61
22	Identification of an Adhesion Site within the Syndecan-4 Extracellular Protein Domain. Journal of Biological Chemistry, 1997, 272, 12901-12904.	3.4	62