Ildar V Gainetdinov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8003817/publications.pdf Version: 2024-02-01

ILDAR V CAINETDINOV

#	Article	IF	CITATIONS
1	PIWI-interacting RNAs: small RNAs with big functions. Nature Reviews Genetics, 2019, 20, 89-108.	16.3	779
2	A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for InÂVivo Genome Editing. Molecular Cell, 2019, 73, 714-726.e4.	9.7	194
3	A Single Mechanism of Biogenesis, Initiated and Directed by PIWI Proteins, Explains piRNA Production in Most Animals. Molecular Cell, 2018, 71, 775-790.e5.	9.7	159
4	The evolutionarily conserved piRNA-producing locus pi6 is required for male mouse fertility. Nature Genetics, 2020, 52, 728-739.	21.4	96
5	Potent Cas9 Inhibition in Bacterial and Human Cells by AcrIIC4 and AcrIIC5 Anti-CRISPR Proteins. MBio, 2018, 9, .	4.1	80
6	Thermus thermophilus Argonaute Functions in the Completion of DNA Replication. Cell, 2020, 182, 1545-1559.e18.	28.9	78
7	The RNA-Binding ATPase, Armitage, Couples piRNA Amplification in Nuage to Phased piRNA Production on Mitochondria. Molecular Cell, 2019, 74, 982-995.e6.	9.7	65
8	Evolutionarily conserved pachytene piRNA loci are highly divergent among modern humans. Nature Ecology and Evolution, 2020, 4, 156-168.	7.8	58
9	Two modes of targeting transposable elements by piRNA pathway in human testis. Rna, 2017, 23, 1614-1625.	3.5	36
10	Maelstrom Represses Canonical Polymerase II Transcription within Bi-directional piRNA Clusters in Drosophila melanogaster. Molecular Cell, 2019, 73, 291-303.e6.	9.7	33
11	Terminal modification, sequence, length, and PIWI-protein identity determine piRNA stability. Molecular Cell, 2021, 81, 4826-4842.e8.	9.7	27
12	Hypomethylation of human-specific family of LINE-1 retrotransposons in circulating DNA of lung cancer patients. Lung Cancer, 2016, 99, 127-130.	2.0	24
13	GTSF1 accelerates target RNA cleavage by PIWI-clade Argonaute proteins. Nature, 2022, 608, 618-625.	27.8	24
14	Expression Profiles of PIWIL2 Short Isoforms Differ in Testicular Germ Cell Tumors of Various Differentiation Subtypes. PLoS ONE, 2014, 9, e112528.	2.5	19
15	Assessment of piRNA biogenesis and function in testicular germ cell tumors and their precursor germ cell neoplasia in situ. BMC Cancer, 2018, 18, 20.	2.6	17
16	Distinguishing epigenetic features of preneoplastic testis tissues adjacent to seminomas and nonseminomas. Oncotarget, 2016, 7, 22439-22447.	1.8	11
17	Intragenic Locus in Human PIWIL2 Gene Shares Promoter and Enhancer Functions. PLoS ONE, 2016, 11, e0156454.	2.5	4