
Sang Hee Won

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8003691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computation of conventional and alternative jet fuel sensitivity to lean blowout. Journal of the Energy Institute, 2022, 101, 19-31.	2.7	6
2	Sub-millimeter sized multi-component jet fuel surrogate droplet combustion: Physicochemical preferential vaporization effects. Proceedings of the Combustion Institute, 2021, 38, 3313-3323.	2.4	13
3	Evaluating ignition propensity of high cycloparaffinic content alternative jet fuel by a chemical functional group approach. Combustion and Flame, 2021, 223, 243-253.	2.8	13
4	Combustion characteristics of crude oils for gas turbine applications by DCN measurements and NMR spectroscopy. Proceedings of the Combustion Institute, 2021, 38, 5463-5473.	2.4	4
5	Preferential Vaporization Potential of Jet fuels Evaluated by NMR Spectroscopy. , 2021, , .		1
6	Investigating the role of atomization on flame stability of liquid fuels in an annular spray burner. Fuel, 2020, 265, 116945.	3.4	34
7	Effects of CO2 Addition on the Turbulent Flame Front Dynamics and Propagation Speeds of Methane/Air Mixtures. Journal of Engineering for Gas Turbines and Power, 2019, 141, .	O.5	5
8	Dynamics of cool flames. Progress in Energy and Combustion Science, 2019, 75, 100787.	15.8	119
9	Turbulent nonpremixed cool flames: Experimental measurements, Direct Numerical Simulation, and manifold-based combustion modeling. Combustion and Flame, 2019, 209, 144-154.	2.8	9
10	Surrogate fuels and combustion characteristics of liquid transportation fuels. Computer Aided Chemical Engineering, 2019, 45, 513-602.	0.3	7
11	Preferential vaporization impacts on lean blow-out of liquid fueled combustors. Combustion and Flame, 2019, 205, 295-304.	2.8	42
12	Chemical functional group descriptor for ignition propensity of large hydrocarbon liquid fuels. Proceedings of the Combustion Institute, 2019, 37, 5083-5093.	2.4	27
13	Lube oil chemistry influences on autoignition as measured in an ignition quality tester. Proceedings of the Combustion Institute, 2019, 37, 4645-4654.	2.4	18
14	Liquid Fuel Property Effects on Lean Blowout in an Aircraft Relevant Combustor. Journal of Engineering for Gas Turbines and Power, 2019, 141, .	0.5	28
15	Ozone assisted cool flame combustion of sub-millimeter sized n-alkane droplets at atmospheric and higher pressure. Combustion and Flame, 2018, 195, 220-231.	2.8	8
16	Experimental Investigation of the Stabilization and Structure of Turbulent Cool Diffusion Flames. , 2018, , .		1
17	The Impact of Preferential Vaporization on Lean Blowout in a Referee Combustor at Figure of Merit Conditions. , 2018, , .		8
18	Derived Cetane Number As Chemical Potential Indicator for Near-Limit Combustion Behaviors in Gas		0

#	Article	IF	CITATIONS
19	Lean blow-out (LBO) computations in a gas turbine combustor. , 2018, , .		6
20	On the Development of General Surrogate Composition Calculations for Chemical and Physical Properties. , 2017, , .		9
21	Effects of n-Alkane Chain Length on Cool Diffusion Flames. , 2017, , .		0
22	Effect of Low-Temperature Reactivity on the Turbulent Combustion of n-Octane/iso-Octane Mixtures in a Reactor-Assisted Turbulent Slot Burner. , 2017, , .		1
23	Study of the low-temperature reactivity of large n-alkanes through cool diffusion flame extinction. Combustion and Flame, 2017, 179, 23-32.	2.8	56
24	Reconstruction of chemical structure of real fuel by surrogate formulation based upon combustion property targets. Combustion and Flame, 2017, 183, 39-49.	2.8	72
25	Corrigendum to "Experimental and Numerical Characterization of Freely Propagating Ozone-Activated Dimethyl Ether Cool Flames―[Combust. Flame (176) 326–333]. Combustion and Flame, 2017, 180, 1.	2.8	2
26	Experimental and numerical characterization of freely propagating ozone-activated dimethyl ether cool flames. Combustion and Flame, 2017, 176, 326-333.	2.8	32
27	Thermo-kinetic dynamics of near-limit cool diffusion flames. Proceedings of the Combustion Institute, 2017, 36, 1329-1337.	2.4	19
28	Flame structure and ignition limit of partially premixed cool flames in a counterflow burner. Proceedings of the Combustion Institute, 2017, 36, 1513-1522.	2.4	41
29	Chemistry and transport effects on critical flame initiation radius for alkanes and aromatic fuels. Proceedings of the Combustion Institute, 2017, 36, 1457-1465.	2.4	11
30	Study of ignition chemistry on turbulent premixed flames of n-heptane/air by using a reactor assisted turbulent slot burner. Combustion and Flame, 2016, 169, 19-29.	2.8	27
31	Experimental study of the dynamics and structure of self-sustaining premixed cool flames using a counterflow burner. Combustion and Flame, 2016, 166, 125-132.	2.8	87
32	Flame Dynamics and Structures of Partially Premixed Cool Flames. , 2016, , .		4
33	Predicting the global combustion behaviors of petroleum-derived and alternative jet fuels by simple fuel property measurements. Fuel, 2016, 168, 34-46.	3.4	68
34	Combustion characteristics of C4 iso-alkane oligomers: Experimental characterization of iso-dodecane as a jet fuel surrogate component. Combustion and Flame, 2016, 165, 137-143.	2.8	48
35	Plasma Assisted Low Temperature Combustion. Plasma Chemistry and Plasma Processing, 2016, 36, 85-105.	1.1	130

36 Cool Flames Activated by Ozone Addition. , 2015, , .

#	Article	IF	CITATIONS
37	Self-sustaining n -heptane cool diffusion flames activated by ozone. Proceedings of the Combustion Institute, 2015, 35, 881-888.	2.4	118
38	Computational studies of diffusion cool flame structures of n-heptane with/without ozone sensitization with a reduced chemistry. Journal of Mechanical Science and Technology, 2015, 29, 1297-1305.	0.7	8
39	Schlieren imaging and pulsed detonation engine testing of ignition by a nanosecond repetitively pulsed discharge. Combustion and Flame, 2015, 162, 2496-2507.	2.8	74
40	Plasma assisted combustion: kinetic studies and new combustion technology. , 2015, , .		1
41	Effect of Ignition Chemistry on Turbulent Premixed Flames of n-Heptane and Toluene. , 2015, , .		ο
42	Numerical simulations of premixed cool flames of dimethyl ether/oxygen mixtures. Combustion and Flame, 2015, 162, 3580-3588.	2.8	77
43	Multi-scale modeling of dynamics and ignition to flame transitions of high pressure stratified n-heptane/toluene mixtures. Proceedings of the Combustion Institute, 2015, 35, 1049-1056.	2.4	39
44	Characterization of Global Combustion Properties with Simple Fuel Property Measurements for Alternative Jet Fuels. , 2014, , .		9
45	Development of Reduced Kinetic Models for Petroleum-Derived and Alternative Jet Fuels. , 2014, , .		11
46	The combustion properties of 2,6,10-trimethyl dodecane and a chemical functional group analysis. Combustion and Flame, 2014, 161, 826-834.	2.8	100
47	Importance of a Cycloalkane Functionality in the Oxidation of a Real Fuel. Energy & Fuels, 2014, 28, 7649-7661.	2.5	44
48	Emulating the Combustion Behavior of Real Jet Aviation Fuels by Surrogate Mixtures of Hydrocarbon Fluid Blends: Implications for Science and Engineering. Energy & Fuels, 2014, 28, 3474-3485.	2.5	70
49	The role of low temperature fuel chemistry on turbulent flame propagation. Combustion and Flame, 2014, 161, 475-483.	2.8	80
50	In situ plasma activated low temperature chemistry and the S-curve transition in DME/oxygen/helium mixture. Combustion and Flame, 2014, 161, 2054-2063.	2.8	75
51	Stability enhancement of ozone-assisted laminar premixed Bunsen flames in nitrogen co-flow. Combustion and Flame, 2014, 161, 917-926.	2.8	58
52	A New Cool Flame: Establishment and Studies of Dynamics and Kinetics. , 2014, , .		2
53	Measurements of the critical initiation radius and unsteady propagation of n-decane/air premixed flames. Proceedings of the Combustion Institute, 2013, 34, 929-936.	2.4	109
54	A comparative study of the chemical kinetic characteristics of small methyl esters in diffusion flame extinction. Proceedings of the Combustion Institute, 2013, 34, 821-829.	2.4	78

#	Article	IF	CITATIONS
55	Direct ignition and S-curve transition by in situ nano-second pulsed discharge in methane/oxygen/helium counterflow flame. Proceedings of the Combustion Institute, 2013, 34, 847-855.	2.4	100
56	The combustion properties of 1,3,5-trimethylbenzene and a kinetic model. Fuel, 2013, 109, 125-136.	3.4	41
57	Uncertainty assessment of species measurements in acetone counterflow diffusion flames. Proceedings of the Combustion Institute, 2013, 34, 813-820.	2.4	33
58	Experimental Assessment of Transport and Chemical Kinetic Impacts on Critical Flame Initiation Radius in Outwardly Propagating Premixed Flames. , 2013, , .		0
59	Direct Ignition and S-curve Transition by in situ Nano-Second Pulsed Discharge in Methane/Oxygen/Helium Counterflow Flame. , 2012, , .		1
60	Effects of vitiation and pressure on laminar flame speeds of n-decane. , 2012, , .		4
61	The combustion kinetics of a synthetic paraffinic jet aviation fuel and a fundamentally formulated, experimentally validated surrogate fuel. Combustion and Flame, 2012, 159, 3014-3020.	2.8	124
62	Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits. Combustion and Flame, 2012, 159, 221-229.	2.8	157
63	A radical index for the determination of the chemical kinetic contribution to diffusion flame extinction of large hydrocarbon fuels. Combustion and Flame, 2012, 159, 541-551.	2.8	100
64	Methyl butanoate inhibition of n-heptane diffusion flames through an evaluation of transport and chemical kinetics. Combustion and Flame, 2012, 159, 1371-1384.	2.8	42
65	A chemical kinetic study of tertiary-butanol in a flow reactor and a counterflow diffusion flame. Combustion and Flame, 2012, 159, 968-978.	2.8	46
66	The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena. Combustion and Flame, 2012, 159, 1444-1466.	2.8	355
67	A kinetic model for methyl decanoate combustion. Combustion and Flame, 2012, 159, 1793-1805.	2.8	82
68	Kinetic effects of aromatic molecular structures on diffusion flame extinction. Proceedings of the Combustion Institute, 2011, 33, 1163-1170.	2.4	80
69	Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction. Proceedings of the Combustion Institute, 2011, 33, 3211-3218.	2.4	96
70	Flame propagation enhancement by plasma excitation of oxygen. Part II: Effects of O2(a1Δg). Combustion and Flame, 2010, 157, 1916-1928.	2.8	192
71	Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3. Combustion and Flame, 2010, 157, 1906-1915.	2.8	272
72	Kinetic effects of toluene blending on the extinction limit of n-decane diffusion flames. Combustion and Flame, 2010, 157, 411-420.	2.8	86

#	Article	IF	CITATIONS
73	A jet fuel surrogate formulated by real fuel properties. Combustion and Flame, 2010, 157, 2333-2339.	2.8	484
74	Effects of Non-Equilibrium Plasma on Counterflow Diffusion Flames. , 2010, , .		0
75	Kinetic Effects of Toluene Blending on n-Decane Diffusion Flame Extinction Limit. , 2009, , .		1