Stefania Hau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8003609/publications.pdf

Version: 2024-02-01

933447 996975 28 268 10 15 h-index citations g-index papers 28 28 28 351 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ndâ†'Yb energy transfer in (Nd, Yb):Y2O3 transparent ceramics. Optical Materials, 2010, 32, 1333-1336.	3.6	31
2	Efficient sensitization of Yb 3 + emission by Nd 3 + in Y $_2$ O $_3$ transparent ceramics and the prospect for high-energy Yb lasers. Optics Letters, 2009, 34, 2141.	3.3	18
3	Optical properties of Sm3+ doped strontium hexa-aluminate single crystals. Journal of Alloys and Compounds, 2015, 622, 296-302.	5.5	17
4	Optical properties of Sm 3+ doped Ca 3 (Nb,Ga) 5 O 12 and Ca 3 (Li,Nb,Ga) 5 O 12 single crystals. Journal of Luminescence, 2017, 186, 175-182.	3.1	17
5	Highly transparent Yb:Y2O3 ceramics obtained by solid-state reaction and combined sintering procedures. Ceramics International, 2019, 45, 3217-3222.	4.8	17
6	Structural-phase state and lasing of 5–15 at% Yb3+:Y3Al5O12 optical ceramics. Journal of the European Ceramic Society, 2017, 37, 4115-4122.	5.7	16
7	Yellow laser potential of cubic Ca3(Nb,Ga)5O12:Dy3+ and Ca3(Li,Nb,Ga)5O12:Dy3+ single crystals. Journal of Alloys and Compounds, 2018, 739, 806-816.	5.5	16
8	Multicenters in Ce3+ visible emission of YAG ceramics. Optical Materials, 2014, 37, 727-733.	3.6	15
9	Compositional dependence of optical properties of Sm3+-doped Y3ScxAl5-xO12 polycrystalline ceramics. Journal of Alloys and Compounds, 2016, 683, 547-553.	5.5	13
10	Spectroscopic properties and laser performances of Yb:LGSB nonlinear optical crystal. Journal of Alloys and Compounds, 2016, 688, 510-517.	5.5	12
11	Vibronics in optical spectra of Yb $3+$ and Ce $3+$ in YAG and Y 2 O 3 ceramics. Optical Materials, 2017, 63, 143-152.	3.6	12
12	Efficient near-infrared laser emission and nonlinear optical properties of a newly developed Yb:LYSB laser crystal. Journal of Alloys and Compounds, 2020, 844, 156143.	5.5	9
13	Bifunctional LaxNdyGdzSc4â^'xâ^'yâ^'z(BO3)4 crystal: Czochralski growth, linear and nonlinear optical properties, and near-infrared laser emission performances. Optics and Laser Technology, 2020, 131, 106433.	4.6	9
14	Spectroscopic investigations of Pr3+ ions doped CNGG and CLNGG single crystals. Journal of Alloys and Compounds, 2019, 799, 288-301.	5.5	8
15	Structure and temperature effects on Nd3+ spectra in polycrystalline mixed scandium aluminum garnets Y3ScxAl5â^xO12. Optical Materials, 2015, 47, 465-472.	3.6	7
16	Efficient 1 Âμm Laser Emission of Czochralski-Grown Nd:LGSB Single Crystal. Materials, 2019, 12, 2005.	2.9	7
17	Optical study of SrLaGa3O7 ceramic samples doped with Er3+ and Yb3+. Optical Materials, 2020, 100, 109613.	3.6	7
18	Enhancement of the laser emission efficiency of Yb:Y2O3 ceramics via multi-step sintering method fabrication. Optical Materials, 2020, 109, 110411.	3.6	7

#	Article	IF	CITATIONS
19	Structural and electron-phonon interaction effects in optical spectra of Pr 3+ and Sm 3+ in YAG. Journal of Alloys and Compounds, 2017, 706, 176-185.	5. 5	6
20	1532â€nm sensitized luminescence and up-conversion in Yb,Er:YAG transparent ceramics. Optical Materials, 2018, 77, 221-225.	3.6	6
21	Crystal growth and structural characterization of Sm3+, Pr3+ and Dy3+-doped CNGG and CLNGG single crystals. Optical Materials, 2018, 84, 335-338.	3.6	6
22	A novel IR-transparent Ho3+:Y2O3–MgO nanocomposite ceramics for potential laser applications. Ceramics International, 2021, 47, 1399-1406.	4.8	6
23	Growth and characterization of 3.5 at.% Nd:LGSB bifunctional crystal. Optical Materials, 2022, 123, 111832.	3.6	3
24	(INVITED) Czochralski-grown LaxGdyRzSc4-x-y-z(BO3)4 (R = Yb, Nd) crystals - A review of recent developments. Optical Materials: X , 2020, 7 , 100052.	0.8	2
25	Pr:LGSB as a new nonlinear optical crystal: Czochralski growth and optical characterization. Journal of Alloys and Compounds, 2022, 908, 164633.	5.5	1
26	Highly Efficient Laser Emission from a Novel Nd:LGSB Crystal. , 2019, , .		0
27	New Yb:LYSB bifunctional crystal for efficient near-infrared laser emission and self-frequency doubling conversion. EPJ Web of Conferences, 2020, 243, 06004.	0.3	0
28	LYSB and Yb-doped LYSB Crystals: Czochralski Growth, Optical Characterization and Laser Emission Performances., 2021, , .		0