Wen-Li Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8002925/publications.pdf

Version: 2024-02-01

154 4,409 39 54
papers citations h-index g-index

157 157 157 4440 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Effective immobilization of heavy metals via reactive barrier by rhizosphere bacteria and their biofilms. Environmental Research, 2022, 207, 112080.	3.7	10
2	Warming and humidification mediated changes of DOM composition in an Alfisol. Science of the Total Environment, 2022, 805, 150198.	3.9	11
3	Surface corrosion by microbial flora enhances the application potential of phosphate rock for cadmium remediation. Chemical Engineering Journal, 2022, 429, 132560.	6.6	7
4	Natural bioaugmentation enhances the application potential of biochar for Cd remediation. Separation and Purification Technology, 2022, 282, 119948.	3.9	8
5	ABC transporter slr0982 affects response of Synechocystis sp. PCC 6803 to oxidative stress caused by methyl viologen. Research in Microbiology, 2022, 173, 103888.	1.0	2
6	Functional group diversity for the adsorption of lead(Pb) to bacterial cells and extracellular polymeric substances. Environmental Pollution, 2022, 295, 118651.	3.7	18
7	Second Messenger c-di-GMP Modulates Exopolysaccharide Pea-Dependent Phenotypes via Regulation of <i>eppA</i> Expression in Pseudomonas putida. Applied and Environmental Microbiology, 2022, 88, aem0227021.	1.4	4
8	Niche overlap is a predictor of the interspecies correlations detected by microbial network analysis in soil micro-aggregates. Journal of Soils and Sediments, 2022, 22, 1521-1529.	1.5	5
9	Wsp system oppositely modulates antibacterial activity and biofilm formation via <scp>FleQâ€FleN</scp> complex in <i>Pseudomonas putida</i> Environmental Microbiology, 2022, 24, 1543-1559.	1.8	9
10	Soil Aggregates and Fertilizer Treatments Drive Bacterial Interactions via Interspecies Niche Overlap. Microbiology Spectrum, 2022, 10, e0252421.	1.2	6
11	Bacterial rather than fungal diversity and community assembly drive soil multifunctionality in a subtropical forest ecosystem. Environmental Microbiology Reports, 2022, 14, 85-95.	1.0	20
12	Ammonia level influences the assembly of dissimilatory nitrate reduction to ammonia bacterial community in soils under different heavy metal remediation treatments. Science of the Total Environment, 2022, 838, 156393.	3.9	5
13	Mass spectral imaging showing the plant growth-promoting rhizobacteria's effect on the Brachypodium awn. Biointerphases, 2022, 17, .	0.6	3
14	Soil aggregate modulates microbial ecological adaptations and community assemblies in agricultural soils. Soil Biology and Biochemistry, 2022, 172, 108769.	4.2	25
15	Partitioning Nitrospira community structure and co-occurrence patterns in a long-term inorganic and organic fertilization soil. Journal of Soils and Sediments, 2021, 21, 1099-1108.	1.5	11
16	Spatial differences in soil microbial diversity caused by <scp>pH</scp> â€driven organic phosphorus mineralization. Land Degradation and Development, 2021, 32, 766-776.	1.8	56
17	The role of interfacial reactions in controlling the distribution of Cd within goethiteâ^humic acidâ^bacteria composites. Journal of Hazardous Materials, 2021, 405, 124081.	6.5	20
18	Dispersal limitation driving phoD-harboring bacterial community assembly: A potential indicator for ecosystem multifunctionality in long-term fertilized soils. Science of the Total Environment, 2021, 754, 141960.	3.9	32

#	Article	IF	CITATIONS
19	Efficient immobilization of Cd2+ by nanoscale carbonate hydroxyapatite synthesized by ureolytic bacteria. Journal of Cleaner Production, 2021, 279, 123619.	4.6	21
20	Microscale heterogeneity of the soil nitrogen cycling microbial functional structure and potential metabolism. Environmental Microbiology, 2021, 23, 1199-1209.	1.8	16
21	Recent advances in exploring the heavy metal(loid) resistant microbiome. Computational and Structural Biotechnology Journal, 2021, 19, 94-109.	1.9	69
22	E.Âcoli@UiO-67 composites as a recyclable adsorbent for bisphenol A removal. Chemosphere, 2021, 270, 128672.	4.2	9
23	Calcium-crosslinked alginate-encapsulated bacteria for remediating of cadmium-polluted water and production of CdS nanoparticles. Applied Microbiology and Biotechnology, 2021, 105, 2171-2179.	1.7	9
24	Whole-Cell Microbial Bioreporter for Soil Contaminants Detection. Frontiers in Bioengineering and Biotechnology, 2021, 9, 622994.	2.0	20
25	Soil aggregate size-dependent relationships between microbial functional diversity and multifunctionality. Soil Biology and Biochemistry, 2021, 154, 108143.	4.2	85
26	Soil amendments change bacterial functional genes more than taxonomic structure in a cadmium-contaminated soil. Soil Biology and Biochemistry, 2021, 154, 108126.	4.2	25
27	Bridging Rare and Abundant Bacteria with Ecosystem Multifunctionality in Salinized Agricultural Soils: from Community Diversity to Environmental Adaptation. MSystems, 2021, 6, .	1.7	31
28	The twoâ€component system <scp>TarRâ€"TarS</scp> is regulated by <scp>câ€diâ€GMP</scp> / <scp>FleQ</scp> FliA and modulates antibiotic susceptibility in <i>Pseudomonas putida</i> . Environmental Microbiology, 2021, 23, 5239-5257.	> 1.8	5
29	New insights into the function of the proteins IsiC and IsiD from Synechocystis sp. PCC 6803 under iron limitation. Applied Microbiology and Biotechnology, 2021, 105, 4693-4707.	1.7	5
30	Identification of c-di-GMP/FleQ-Regulated New Target Genes, Including <i>cyaA</i> , Encoding Adenylate Cyclase, in Pseudomonas putida. MSystems, 2021, 6, .	1.7	15
31	Effects of long-term fertilization on calcium-associated soil organic carbon: Implications for C sequestration in agricultural soils. Science of the Total Environment, 2021, 772, 145037.	3.9	30
32	Community assembly mechanisms and co-occurrence patterns of nitrite-oxidizing bacteria communities in saline soils. Science of the Total Environment, 2021, 772, 145472.	3.9	20
33	Keystone species determine the "selection mechanism―of multispecies biofilms for bacteria from soil aggregates. Science of the Total Environment, 2021, 773, 145069.	3.9	11
34	Divergent bacterial transformation exerted by soil minerals. Science of the Total Environment, 2021, 784, 147173.	3.9	5
35	High Salinity Inhibits Soil Bacterial Community Mediating Nitrogen Cycling. Applied and Environmental Microbiology, 2021, 87, e0136621.	1.4	42
36	The developmental regulator <scp>PatD</scp> modulates assembly of the cellâ€division protein <scp>FtsZ</scp> in the cyanobacterium <i>Anabaena</i> sp. <scp>PCC</scp> 7120. Environmental Microbiology, 2021, 23, 4823-4837.	1.8	8

#	Article	IF	CITATIONS
37	A novel eco-friendly recycling of food waste for preparing biofilm-attached biochar to remove Cd and Pb in wastewater. Journal of Cleaner Production, 2021, 311, 127514.	4.6	41
38	Soil aggregate isolation method affects interpretation of protistan community. Soil Biology and Biochemistry, 2021, 161, 108388.	4.2	8
39	Abundance for subgroups of denitrifiers in soil aggregates asscociates with denitrifying enzyme activities under different fertilization regimes. Applied Soil Ecology, 2021, 166, 103983.	2.1	4
40	Mechanistic investigation and modeling of Cd immobilization by iron (hydr)oxide-humic acid coprecipitates. Journal of Hazardous Materials, 2021, 420, 126603.	6.5	19
41	Distinct Responses of Rare and Abundant Microbial Taxa to <i>In Situ</i> Chemical Stabilization of Cadmium-Contaminated Soil. MSystems, 2021, 6, e0104021.	1.7	43
42	Transcriptome and metabolome analyses of response of Synechocystis sp. PCC 6803 to methyl viologen. Applied Microbiology and Biotechnology, 2021, 105, 8377-8392.	1.7	2
43	A crosstalk between câ€diâ€GMP and cAMP in regulating transcription of GcsA, a diguanylate cyclase involved in swimming motility in <i>Pseudomonas putida</i> . Environmental Microbiology, 2020, 22, 142-157.	1.8	9
44	Characterization of Cd2+ biosorption by Pseudomonas sp. strain 375, a novel biosorbent isolated from soil polluted with heavy metals in Southern China. Chemosphere, 2020, 240, 124893.	4.2	77
45	Soil aggregate fractionation and phosphorus fraction driven by long-term fertilization regimes affect the abundance and composition of P-cycling-related bacteria. Soil and Tillage Research, 2020, 196, 104475.	2.6	61
46	Soil aggregates impact nitrifying microorganisms in a vertisol under diverse fertilization regimes. European Journal of Soil Science, 2020, 71, 536-547.	1.8	13
47	Arbuscular mycorrhizal-like fungi and glomalin-related soil protein drive the distributions of carbon and nitrogen in a large scale. Journal of Soils and Sediments, 2020, 20, 963-972.	1.5	22
48	Analysis of lead forms and transition in agricultural soil by nano-fluorescence method. Journal of Hazardous Materials, 2020, 389, 121469.	6.5	9
49	Phenotypic–genotypic analysis of GGDEF/EAL/HDâ€GYP domainâ€encoding genes in <i>Pseudomonas putida</i> . Environmental Microbiology Reports, 2020, 12, 38-48.	1.0	15
50	Fertilizer types shaped the microbial guilds driving the dissimilatory nitrate reduction to ammonia process in a Ferralic Cambisol. Soil Biology and Biochemistry, 2020, 141, 107677.	4.2	12
51	Co-effect of minerals and $Cd(II)$ promoted the formation of bacterial biofilm and consequently enhanced the sorption of $Cd(II)$. Environmental Pollution, 2020, 258, 113774.	3.7	26
52	Deciphering belowground nitrifier assemblages with elevational soil sampling in a subtropical forest ecosystem (Mount Lu, China). FEMS Microbiology Ecology, 2020, 96, .	1.3	8
53	The species evenness of "prey―bacteria correlated with Bdellovibrio-and-like-organisms (BALOs) in the microbial network supports the biomass of BALOs in a paddy soil. FEMS Microbiology Ecology, 2020, 96, .	1.3	3
54	Long-term chemical fertilization-driving changes in soil autotrophic microbial community depresses soil CO2 fixation in a Mollisol. Science of the Total Environment, 2020, 748, 141317.	3.9	25

#	Article	IF	CITATIONS
55	Both Enolase and the DEAD-Box RNA Helicase CrhB Can Form Complexes with RNase E in <i>Anabaena</i> sp. Strain PCC 7120. Applied and Environmental Microbiology, 2020, 86, .	1.4	3
56	Complexity of bacterial and fungal network increases with soil aggregate size in an agricultural Inceptisol. Applied Soil Ecology, 2020, 154, 103640.	2.1	28
57	Manure fertilizes alter the nitrite oxidizer and comammox community composition and increase nitrification rates. Soil and Tillage Research, 2020, 204, 104701.	2.6	32
58	The limited effects of carbonaceous material amendments on nitrite-oxidizing bacteria in an Alfisol. Science of the Total Environment, 2020, 734, 139398.	3.9	7
59	Function analysis of RNase E in the filamentous cyanobacterium Anabaena sp. PCC 7120. Research in Microbiology, 2020, 171, 194-202.	1.0	1
60	Synergistic effect of biofilm growth and cadmium adsorption via compositional changes of extracellular matrix in montmorillonite system. Bioresource Technology, 2020, 315, 123742.	4.8	19
61	Characterization of Cu distribution in clay-sized soil aggregates by NanoSIMS and micro-XRF. Chemosphere, 2020, 249, 126143.	4.2	18
62	RNase II binds to RNase E and modulates its endoribonucleolytic activity in the cyanobacterium Anabaena PCC 7120. Nucleic Acids Research, 2020, 48, 3922-3934.	6.5	10
63	Aggregational differentiation of ureolytic microbes in an Ultisol under long-term organic and chemical fertilizations. Science of the Total Environment, 2020, 716, 137103.	3.9	20
64	A manganese-oxidizing bacterial consortium and its biogenic Mn oxides for dye decolorization and heavy metal adsorption. Chemosphere, 2020, 253, 126627.	4.2	45
65	Transcriptome Analysis Reveals IsiA-Regulatory Mechanisms Underlying Iron Depletion and Oxidative-Stress Acclimation in <i>Synechocystis</i> sp. Strain PCC 6803. Applied and Environmental Microbiology, 2020, 86, .	1.4	7
66	<i>patD</i> , a Gene Regulated by NtcA, Is Involved in the Optimization of Heterocyst Frequency in the Cyanobacterium <i>Anabaena</i> sp. Strain PCC 7120. Journal of Bacteriology, 2019, 201, .	1.0	9
67	Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors. Environment International, 2019, 131, 104995.	4.8	123
68	Soil Aggregate Stratification of Ureolytic Microbiota Affects Urease Activity in an Inceptisol. Journal of Agricultural and Food Chemistry, 2019, 67, 11584-11590.	2.4	16
69	High c-di-GMP promotes expression of fpr-1 and katE involved in oxidative stress resistance in Pseudomonas putida KT2440. Applied Microbiology and Biotechnology, 2019, 103, 9077-9089.	1.7	11
70	The microbial network in naturally fertile paddy soil possibly facilitates functional recruitment in the rice mature stage. Applied Soil Ecology, 2019, 135, 174-181.	2.1	13
71	Bio-organic stabilizing agent shows promising prospect for the stabilization of cadmium in contaminated farmland soil. Environmental Science and Pollution Research, 2019, 26, 23399-23406.	2.7	19
72	Size-Dependent Bacterial Toxicity of Hematite Particles. Environmental Science & Environmental Science	4.6	46

#	Article	IF	Citations
73	Complete genome sequence of Raoultella sp. strain X13, a promising cell factory for the synthesis of CdS quantum dots. 3 Biotech, 2019, 9, 120.	1.1	5
74	Role of novel bacterial Raoultella sp. strain X13 in plant growth promotion and cadmium bioremediation in soil. Applied Microbiology and Biotechnology, 2019, 103, 3887-3897.	1.7	40
75	The exopolysaccharide gene cluster pea is transcriptionally controlled by RpoS and repressed by AmrZ in Pseudomonas putida KT2440. Microbiological Research, 2019, 218, 1-11.	2.5	16
76	Pb sorption on montmorillonite-bacteria composites: A combination study by XAFS, ITC and SCM. Chemosphere, 2018, 200, 427-436.	4.2	37
77	Distribution and mobility of exogenous copper as influenced by aging and components interactions in three Chinese soils. Environmental Science and Pollution Research, 2018, 25, 10771-10781.	2.7	10
78	Contrasting responses of bacterial and fungal communities to aggregate-size fractions and long-term fertilizations in soils of northeastern China. Science of the Total Environment, 2018, 635, 784-792.	3.9	80
79	Biosorption Performance of Multimetal Resistant Fungus <i>Penicillium chrysogenum</i> XJ-1 for Removal of Cu ²⁺ and Cr ⁶⁺ from Aqueous Solutions. Geomicrobiology Journal, 2018, 35, 40-49.	1.0	21
80	Modeling of Cd adsorption to goethite-bacteria composites. Chemosphere, 2018, 193, 943-950.	4.2	31
81	Ureolytic microbial community is modulated by fertilization regimes and particle-size fractions in a Black soil of Northeastern China. Soil Biology and Biochemistry, 2018, 116, 171-178.	4.2	48
82	Aging shapes the distribution of copper in soil aggregate size fractions. Environmental Pollution, 2018, 233, 569-576.	3.7	38
83	The shift of sulfate-reducing bacterial communities from the upland to the paddy stage in a rapeseed-rice rotation system, and the effect from the long-term straw returning. Applied Soil Ecology, 2018, 124, 124-130.	2.1	7
84	Organic matter facilitates the binding of Pb to iron oxides in a subtropical contaminated soil. Environmental Science and Pollution Research, 2018, 25, 32130-32139.	2.7	22
85	Binding of Cd by ferrihydrite organo-mineral composites: Implications for Cd mobility and fate in natural and contaminated environments. Chemosphere, 2018, 207, 404-412.	4.2	113
86	Nitrite-Oxidizing Bacteria Community Composition and Diversity Are Influenced by Fertilizer Regimes, but Are Independent of the Soil Aggregate in Acidic Subtropical Red Soil. Frontiers in Microbiology, 2018, 9, 885.	1.5	42
87	FinR Regulates Expression of <i>nicC</i> and <i>nicX</i> Operons, Involved in Nicotinic Acid Degradation in Pseudomonas putida KT2440. Applied and Environmental Microbiology, 2018, 84, .	1.4	5
88	Shifts in Nitrobacter- and Nitrospira-like nitrite-oxidizing bacterial communities under long-term fertilization practices. Soil Biology and Biochemistry, 2018, 124, 118-125.	4.2	62
89	Fertilization rather than aggregate size fractions shape the nitrite-oxidizing microbial community in a Mollisol. Soil Biology and Biochemistry, 2018, 124, 179-183.	4.2	25
90	Isolation and Identification of Three Potassium-Solubilizing Bacteria from Rape Rhizospheric Soil and Their Effects on Ryegrass. Geomicrobiology Journal, 2017, 34, 873-880.	1.0	72

#	Article	IF	CITATIONS
91	Nitrospira are more sensitive than Nitrobacter to land management in acid, fertilized soils of a rapeseed-rice rotation field trial. Science of the Total Environment, 2017, 599-600, 135-144.	3.9	49
92	FleN and FleQ play a synergistic role in regulating <i>lapA</i> and <i>bcs</i> operons in <i>Pseudomonas putida</i> KT2440. Environmental Microbiology Reports, 2017, 9, 571-580.	1.0	17
93	Detoxification of hexavalent chromate by growing Paecilomyces lilacinus XLA. Environmental Pollution, 2017, 225, 47-54.	3.7	20
94	Surface complexation modeling of Cu(II) sorption to montmorillonite–bacteria composites. Science of the Total Environment, 2017, 607-608, 1408-1418.	3.9	25
95	Influence of (p)ppGpp on biofilm regulation in Pseudomonas putida KT2440. Microbiological Research, 2017, 204, 1-8.	2.5	44
96	Expression of the phosphodiesterase BifA facilitating swimming motility is partly controlled by FliA in <i>Pseudomonas putida</i> KT2440. MicrobiologyOpen, 2017, 6, e00402.	1.2	7
97	A novel fluorimetric method for laccase activities measurement using Amplex Red as substrate. Talanta, 2017, 162, 143-150.	2.9	19
98	Longâ€term straw returning affects <i>Nitrospira</i> êlike nitrite oxidizing bacterial community in a rapeseedâ€rice rotation soil. Journal of Basic Microbiology, 2017, 57, 309-315.	1.8	26
99	Molecular investigation on the binding of Cd(II) by the binary mixtures of montmorillonite with two bacterial species. Environmental Pollution, 2017, 229, 871-878.	3.7	40
100	Surface complexation modeling of $Cd(II)$ sorption to montmorillonite, bacteria, and their composite. Biogeosciences, 2016, 13, 5557-5566.	1.3	21
101	Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites. Scientific Reports, 2016, 6, 19499.	1.6	49
102	Microbial communities play important roles in modulating paddy soil fertility. Scientific Reports, 2016, 6, 20326.	1.6	63
103	Adsorption of DNA by Bacteria and Their Composites with Minerals. Geomicrobiology Journal, 2016, 33, 822-831.	1.0	9
104	Effects of long term rice straw application on the microbial communities of rapeseed rhizosphere in a paddy-upland rotation system. Science of the Total Environment, 2016, 557-558, 231-239.	3.9	48
105	Competitive adsorption of Pb and Cd on bacteria–montmorillonite composite. Environmental Pollution, 2016, 218, 168-175.	3.7	71
106	Characterization of a phenanthrene-degrading microbial consortium enriched from petrochemical contaminated environment. International Biodeterioration and Biodegradation, 2016, 115, 286-292.	1.9	62
107	Expression of the diguanylate cyclase GcbA is regulated by FleQ in response to cyclic diâ€GMP in <i>Pseudomonas putida</i> KT2440. Environmental Microbiology Reports, 2016, 8, 993-1002.	1.0	11
108	Câ€diâ€GMP regulates the expression of <i>lapA</i> and <i>bcs</i> operons via FleQ in <i>Pseudomonas putida</i> KT2440. Environmental Microbiology Reports, 2016, 8, 659-666.	1.0	45

#	Article	IF	CITATIONS
109	Comparative Analysis of Mechanisms of Cd ²⁺ and Ni ²⁺ Biosorption by Living and Nonliving <i>Mucoromycote</i> sp. XLC. Geomicrobiology Journal, 2016, 33, 274-282.	1.0	17
110	Genetically engineered Pseudomonas putida X3 strain and its potential ability to bioremediate soil microcosms contaminated with methyl parathion and cadmium. Applied Microbiology and Biotechnology, 2016, 100, 1987-1997.	1.7	32
111	Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles. Scientific Reports, 2015, 5, 16857.	1.6	122
112	A Comparative Study on the Biosorption of Cd2+ onto Paecilomyces lilacinus XLA and Mucoromycote sp. XLC. International Journal of Molecular Sciences, 2015, 16, 15670-15687.	1.8	57
113	The Role of CzcRS Two-Component Systems in the Heavy Metal Resistance of Pseudomonas putida X4. International Journal of Molecular Sciences, 2015, 16, 17005-17017.	1.8	17
114	Role of Penicillium chrysogenum XJ-1 in the Detoxification and Bioremediation of Cadmium. Frontiers in Microbiology, 2015, 6, 1422.	1.5	41
115	Dynamics and Cell-Type Specificity of the DNA Double-Strand Break Repair Protein RecN in the Developmental Cyanobacterium Anabaena sp. Strain PCC 7120. PLoS ONE, 2015, 10, e0139362.	1.1	5
116	Effects of humic acid on adhesion of Bacillus subtilis to phyllosilicates and goethite. Chemical Geology, 2015, 416, 19-27.	1.4	29
117	Adsorption of N-acyl-Homoserine Lactone onto Colloidal Minerals Presents Potential Challenges for Quorum Sensing in the Soil Environment. Geomicrobiology Journal, 2015, 32, 602-608.	1.0	6
118	Soil Colloids and Minerals Modulate Metabolic Activity of <i>Pseudomonas putida </i> Measured Using Microcalorimetry. Geomicrobiology Journal, 2014, 31, 590-596.	1.0	46
119	Effects of Solution Chemistry on Bacterial Adhesion with Phyllosilicates and Goethite Explained by the Extended DLVO Theory. Geomicrobiology Journal, 2014, 31, 419-430.	1.0	21
120	In situ ATR-FTIR study on the adhesion of Pseudomonas putida to Red soil colloids. Journal of Soils and Sediments, 2014, 14, 504-514.	1.5	29
121	RNase E forms a complex with polynucleotide phosphorylase in cyanobacteria via a cyanobacterial-specific nonapeptide in the noncatalytic region. Rna, 2014, 20, 568-579.	1.6	33
122	Adhesion of Pseudomonas putida onto kaolinite at different growth phases. Chemical Geology, 2014, 390, 1-8.	1.4	39
123	The regulation of HanA during heterocyst development in cyanobacterium Anabaena sp. PCC 7120. World Journal of Microbiology and Biotechnology, 2014, 30, 2673-2680.	1.7	1
124	Combined Application of Rice Straw and Fungus <i>Penicillium Chrysogenum </i> to Remediate Heavy-Metal-Contaminated Soil. Soil and Sediment Contamination, 2014, 23, 328-338.	1.1	13
125	Estimation of enzymatic, microbial, and chemical properties in Brown soil by microcalorimetry. Journal of Thermal Analysis and Calorimetry, 2014, 116, 969-988.	2.0	17
126	Phenotypic variation caused by variation in the relative copy number of pDU1-based plasmids expressing the GAF domain of Pkn41 or Pkn42 in Anabaena sp. PCC 7120. Research in Microbiology, 2013, 164, 127-135.	1.0	20

#	Article	IF	Citations
127	The effect of extracellular polymeric substances on the adhesion of bacteria to clay minerals and goethite. Chemical Geology, 2013, 360-361, 118-125.	1.4	60
128	Alr5068, a Low-Molecular-Weight protein tyrosine phosphatase, is involved in formation of the heterocysts polysaccharide layer in the cyanobacterium Anabaena sp. PCC 7120. Research in Microbiology, 2013, 164, 875-885.	1.0	2
129	ppGpp Metabolism Is Involved in Heterocyst Development in the Cyanobacterium Anabaena sp. Strain PCC 7120. Journal of Bacteriology, 2013, 195, 4536-4544.	1.0	23
130	Microcalorimetric evaluation of soil microbiological properties under plant residues and dogmatic water gradients in Red soil. Soil Science and Plant Nutrition, 2013, 59, 858-870.	0.8	15
131	Biosorption of cadmium by a metal-resistant filamentous fungus isolated from chicken manure compost. Environmental Technology (United Kingdom), 2012, 33, 1661-1670.	1.2	71
132	The inositol monophosphatase <scp>All</scp> 2917 (<scp>IMPA</scp> 1) is involved in osmotic adaptation in <i><scp>A</scp>nabaena</i> sp. <scp>PCC</scp> 7120. Environmental Microbiology Reports, 2012, 4, 622-632.	1.0	3
133	Surface display of monkey metallothionein \hat{l}_{\pm} tandem repeats and EGFP fusion protein on Pseudomonas putida X4 for biosorption and detection of cadmium. Applied Microbiology and Biotechnology, 2012, 95, 1605-1613.	1.7	24
134	Soil microbial augmentation by an EGFP-tagged Pseudomonas putida X4 to reduce phytoavailable cadmium. International Biodeterioration and Biodegradation, 2012, 71, 55-60.	1.9	34
135	Construction and application of a zinc-specific biosensor for assessing the immobilization and bioavailability of zinc in different soils. Environmental Pollution, 2012, 164, 66-72.	3.7	35
136	Identification of the oriC region and its influence on heterocyst development in the filamentous cyanobacterium Anabaena sp. strain PCC 7120. Microbiology (United Kingdom), 2011, 157, 1910-1919.	0.7	18
137	Effects of S-(3,4-dichlorobenzyl) isothiourea on different cellular events in the cyanobacterium Anabaena sp. strain PCC 7120. Research in Microbiology, 2011, 162, 375-381.	1.0	5
138	Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis. Journal of Hazardous Materials, 2011, 190, 810-815.	6.5	95
139	Microcalorimetric and potentiometric titration studies on the adsorption of copper by P. putida and B. thuringiensis and their composites with minerals. Journal of Hazardous Materials, 2010, 181, 1031-1038.	6.5	59
140	Pseudomonas putida adhesion to goethite: Studied by equilibrium adsorption, SEM, FTIR and ITC. Colloids and Surfaces B: Biointerfaces, 2010, 80, 79-85.	2.5	71
141	Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS), minerals and their composites. Bioresource Technology, 2010, 101, 5774-5779.	4.8	110
142	hetR and patS, two genes necessary for heterocyst pattern formation, are widespread in filamentous nonheterocyst-forming cyanobacteria. Microbiology (United Kingdom), 2009, 155, 1418-1426.	0.7	34
143	Role of bacteria in the adsorption and binding of DNA on soil colloids and minerals. Colloids and Surfaces B: Biointerfaces, 2009, 69, 26-30.	2.5	19
144	Impact of cell wall structure on the behavior of bacterial cells in the binding of copper and cadmium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 347, 50-55.	2.3	60

#	Article	IF	CITATION
145	Adsorption and biodegradation of carbaryl on montmorillonite, kaolinite and goethite. Applied Clay Science, 2009, 46, 102-108.	2.6	64
146	Construction of two lux-tagged Hg2+-specific biosensors and their luminescence performance. Applied Microbiology and Biotechnology, 2008, 79, 363-370.	1.7	24
147	Two Genes Encoding Protein Kinases of the HstK Family Are Involved in Synthesis of the Minor Heterocyst-Specific Glycolipid in the Cyanobacterium Anabaena sp. Strain PCC 7120. Journal of Bacteriology, 2007, 189, 5075-5081.	1.0	33
148	Microcalorimetric investigation on the metabolic activity of Bacillus thuringiensis as influenced by kaolinite, montmorillonite and goethite. Applied Clay Science, 2007, 38, 97-103.	2.6	49
149	A Lithium-Sensitive and Sodium-Tolerant 3′-Phosphoadenosine-5′-Phosphatase Encoded by halA from the Cyanobacterium Arthrospira platensis Is Closely Related to Its Counterparts from Yeasts and Plants. Applied and Environmental Microbiology, 2006, 72, 245-251.	1.4	8
150	Adsorption of Copper and Cadmium by Cu- and Cd-Resistant Bacteria and Their Composites with Soil Colloids and Kaolinite. Geomicrobiology Journal, 2005, 22, 227-236.	1.0	44
151	Immobilization and species of heavy metals in soils in the absence and presence of rhizobia. Soil Science and Plant Nutrition, 2004, 50, 935-939.	0.8	0
152	Distribution and biodiversity of soybean rhizobia in the soils of Shennongjia forest reserve, China. Biology and Fertility of Soils, 2004, 40, 306-312.	2.3	6
153	Chemical Fractionation of Copper, Zinc, and Cadmium in Two Chinese Soils as Influenced by Rhizobia. Communications in Soil Science and Plant Analysis, 2004, 35, 947-960.	0.6	5
154	Genomic analysis of protein kinases, protein phosphatases and two-component regulatory systems of the cyanobacteriumAnabaenasp. strain PCC 7120. FEMS Microbiology Letters, 2002, 217, 155-165.	0.7	63