
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8002723/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning the Volume Phase Transition Temperature of Microgels by Light. Advanced Functional Materials, 2022, 32, 2107946.	14.9	21
2	Tuning the Volume Phase Transition Temperature of Microgels by Light (Adv. Funct. Mater. 2/2022). Advanced Functional Materials, 2022, 32, .	14.9	1
3	Polymerization-Induced Self-Assembly (PISA) Generated Cholesterol-Based Block Copolymer Nano-Objects in a Nonpolar Solvent: Combined Experimental and Simulation Study. Macromolecules, 2022, 55, 1139-1152.	4.8	7
4	Conformational transitions and helical structures of a dipolar chain in external electric fields. Soft Matter, 2021, 17, 1376-1387.	2.7	1
5	pH-Dependent Structure of Block Copolymer Micelles Featuring a Polyampholyte Corona: A Combined Experimental and Theoretical Approach. Macromolecules, 2021, 54, 1976-1991.	4.8	2
6	Adsorption of Silicon-Containing Dendrimers: Effects of Chemical Composition, Structure, and Generation Number. Polymers, 2021, 13, 552.	4.5	4
7	Hybrid Polycarbosilane-Siloxane Dendrimers: Synthesis and Properties. Polymers, 2021, 13, 606.	4.5	17
8	Two contributions to the dielectric response of polar liquids. Journal of Chemical Physics, 2021, 154, 116101.	3.0	4
9	Magnetorheological Fluids Based on Star-Shaped and Linear Polydimethylsiloxanes. Polymer Science - Series A, 2021, 63, 296-306.	1.0	0
10	Dielectric Spectroscopy of Hybrid Magnetoactive Elastomers. Polymers, 2021, 13, 2002.	4.5	7
11	Regulating Tissue-Mimetic Mechanical Properties of Bottlebrush Elastomers by Magnetic Field. ACS Applied Materials & Interfaces, 2021, 13, 38783-38791.	8.0	6
12	The Effect of Explicit Polarity on Conformational Behavior of a Single Polyelectrolyte Chain. Physical Chemistry Chemical Physics, 2021, 23, 26296-26305.	2.8	1
13	Unusual Nanostructured Morphologies Enabled by Interpolyelectrolyte Complexation of Polyions Bearing Incompatible Nonionic Segments. Macromolecules, 2020, 53, 10754-10764.	4.8	7
14	Giant Extensional Strain of Magnetoactive Elastomeric Cylinders in Uniform Magnetic Fields. Materials, 2020, 13, 3297.	2.9	31
15	Low-Modulus Elastomeric Matrices for Magnetoactive Composites with a High Magnetic Field Response. Polymer Science - Series A, 2020, 62, 383-391.	1.0	7
16	Magnetic-field-induced stress in confined magnetoactive elastomers. Soft Matter, 2020, 16, 9047-9058.	2.7	13
17	Effects of generation number, spacer length and temperature on the structure and intramolecular dynamics of siloxane dendrimer melts: molecular dynamics simulations. Soft Matter, 2020, 16, 3792-3805.	2.7	10
18	Magnetically Active Silicone Elastomers: Twenty Years of Development. Ineos Open, 2020, 2, 178-184.	0.7	16

#	Article	IF	CITATIONS
19	Conformational behavior of a semiflexible dipolar chain with a variable relative size of charged groups via molecular dynamics simulations. Soft Matter, 2019, 15, 6073-6085.	2.7	8
20	pH-Induced Amphiphilicity-Reversing Schizophrenic Aggregation by Alternating Copolymers. Macromolecules, 2019, 52, 8346-8358.	4.8	50
21	Electrostatically Stabilized Microphase Separation in Blends of Oppositely Charged Polyelectrolytes. Macromolecules, 2019, 52, 7167-7174.	4.8	18
22	Magnetoactive elastomers with controllable radio-absorbing properties. Materials Today Communications, 2019, 21, 100610.	1.9	12
23	Magnetodielectric Response of Soft Magnetoactive Elastomers: Effects of Filler Concentration and Measurement Frequency. International Journal of Molecular Sciences, 2019, 20, 2230.	4.1	18
24	Effect of the Fraction and Size of Polar Groups on the Formation of Compact Conformations of a Polymer Chain with Variable Stiffness in Low-Polar Media. Polymer Science - Series B, 2019, 61, 704-714.	0.8	2
25	Field-induced surface deformation of magnetoactive elastomers with anisometric fillers: a single-particle model. Soft Matter, 2019, 15, 9507-9519.	2.7	13
26	Surface relief of magnetoactive elastomeric films in a homogeneous magnetic field: molecular dynamics simulations. Soft Matter, 2019, 15, 175-189.	2.7	36
27	Development of magnetoactive elastomers for sealing eye retina detachments. Journal of Applied Polymer Science, 2019, 136, 47425.	2.6	22
28	An interplay of electrostatic and excluded volume interactions in the conformational behavior of a dipolar chain: theory and computer simulations. Soft Matter, 2018, 14, 3232-3235.	2.7	27
29	Effect of counterion excluded volume on the conformational behavior of polyelectrolyte chains. Soft Matter, 2018, 14, 1474-1481.	2.7	21
30	Molecular dynamics simulations of single siloxane dendrimers: Molecular structure and intramolecular mobility of terminal groups. Journal of Chemical Physics, 2018, 148, 014902.	3.0	12
31	Fractional rheological models of dynamic mechanical behavior of magnetoactive elastomers in magnetic fields. Polymer, 2018, 142, 316-329.	3.8	51
32	Controllable hydrophobicity of magnetoactive elastomer coatings. Journal of Magnetism and Magnetic Materials, 2018, 459, 268-271.	2.3	36
33	Modification of carbonyl iron particles by carboxyl-containing polydimethylsiloxanes. Russian Chemical Bulletin, 2018, 67, 1639-1647.	1.5	12
34	Effect of Counterion Size on the Structure of a Flexible Polyelectrolyte Chain in Low-Polar Solvents. Polymer Science - Series C, 2018, 60, 37-48.	1.7	8
35	A Comparative Study of Intramolecular Mobility of Single Siloxane and Carbosilane Dendrimers via Molecular Dynamics Simulations. Polymers, 2018, 10, 838.	4.5	11

Highly Responsive Magnetoactive Elastomers. , 2018, , 221-245.

#	Article	IF	CITATIONS
37	Influence of the geometry on magnetic interactions in a retina fixator based on a magnetoactive elastomer seal. Journal of Physics: Conference Series, 2018, 994, 012002.	0.4	5
38	An unprecedented jump in the viscosity of high-generation carbosilane dendrimer melts. Polymer, 2018, 146, 1-5.	3.8	33
39	Microphase Separation in Complex Coacervate Due to Incompatibility between Polyanion and Polycation. Macromolecules, 2018, 51, 6587-6601.	4.8	36
40	Insight into the Structure of Polybutylcarbosilane Dendrimer Melts via Extensive Molecular Dynamics Simulations. Macromolecules, 2017, 50, 432-445.	4.8	25
41	Magnetodielectric effect in magnetoactive elastomers: Transient response and hysteresis. Polymer, 2017, 127, 119-128.	3.8	49
42	Two regions of microphase separation in ion-containing polymer solutions. Soft Matter, 2017, 13, 6831-6844.	2.7	21
43	Electrophysical and acoustic properties of magnetic elastomers structured by an external magnetic field. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 945-949.	0.6	4
44	Communication: Light driven remote control of microgels' size in the presence of photosensitive surfactant: Complete phase diagram. Journal of Chemical Physics, 2017, 147, 031101.	3.0	22
45	Magnetoactive elastomer as an element of a magnetic retina fixator. Smart Materials and Structures, 2017, 26, 095054.	3.5	22
46	Magnetorheological response of highly filled magnetoactive elastomers from perspective of mechanical energy density: Fractal aggregates above the nanometer scale?. Physical Review E, 2017, 95, 062501.	2.1	35
47	Photosensitive microgels containing azobenzene surfactants of different charges. Physical Chemistry Chemical Physics, 2017, 19, 108-117.	2.8	52
48	Polymer gels with associating side chains and their interaction with surfactants. Journal of Chemical Physics, 2016, 144, 184902.	3.0	6
49	Dissipative particle dynamics for systems with high density of charges: Implementation of electrostatic interactions. Journal of Chemical Physics, 2016, 145, 174101.	3.0	32
50	Polyelectrolyte Gel Swelling and Conductivity vs Counterion Type, Cross-Linking Density, and Solvent Polarity. Macromolecules, 2016, 49, 6630-6643.	4.8	50
51	Conformational Behavior of a Single Polyelectrolyte Chain with Bulky Counterions. Macromolecules, 2016, 49, 1103-1110.	4.8	40
52	Transient magnetorheological response of magnetoactive elastomers to step and pyramid excitations. Soft Matter, 2016, 12, 2901-2913.	2.7	38
53	A fractional calculus approach to modeling rheological behavior of soft magnetic elastomers. Polymer, 2016, 92, 179-188.	3.8	37
54	Rheological properties of nonfunctional derivatives of hyperbranched polycarbosilanes. Russian Chemical Bulletin, 2015, 64, 2145-2151.	1.5	6

#	Article	IF	CITATIONS
55	Magnetic and viscoelastic response of elastomers with hard magnetic filler. Smart Materials and Structures, 2015, 24, 035002.	3.5	107
56	Hysteresis of the viscoelastic properties and the normal force in magnetically and mechanically soft magnetoactive elastomers: Effects of filler composition, strain amplitude and magnetic field. Polymer, 2015, 76, 191-202.	3.8	108
57	Viscoelastic Properties of Magnetorheological Elastomers for Damping Applications. Macromolecular Materials and Engineering, 2014, 299, 1116-1125.	3.6	31
58	Magnetoactive elastomer based on magnetically hard filler: Synthesis and study of viscoelastic and damping properties. Polymer Science - Series A, 2014, 56, 603-613.	1.0	43
59	Experimental study of the magnetic field enhanced Payne effect in magnetorheological elastomers. Soft Matter, 2014, 10, 8765-8776.	2.7	141
60	Strong magnetodielectric effects in magnetorheological elastomers. Soft Matter, 2013, 9, 11318.	2.7	90
61	New Type of Swelling Behavior upon Gel Ionization: Theory vs Experiment. Macromolecules, 2013, 46, 9359-9367.	4.8	34
62	Magnetodeformational effect of the magnetoactive elastomer and its possible applications. Journal of Physics: Conference Series, 2013, 412, 012031.	0.4	30
63	Low-frequency rheology of magnetically controlled elastomers with isotropic structure. Polymer Science - Series A, 2010, 52, 1344-1354.	1.0	21
64	New Composite Elastomers with Giant Magnetic Response. Macromolecular Materials and Engineering, 2010, 295, 336-341.	3.6	159
65	AB-Block Copolymer with Moving B Blocks as a Model for Interpolymer Complexes. Macromolecular Theory and Simulations, 2010, 19, 240-248.	1.4	1
66	Microphase Separation Induced by Complexation of Ionicâ ``Non-Ionic Diblock Copolymers with Oppositely Charged Linear Chains. Macromolecules, 2010, 43, 2622-2629.	4.8	8
67	Effect of formation of ion pairs on the stability of stoichiometric block ionomer complexes. Polymer Science - Series A, 2007, 49, 1053-1063.	1.0	14
68	Interaction of two polyelectrolyte gels in solution of an oppositely charged surfactant. Polymer Science - Series A, 2007, 49, 1129-1136.	1.0	1
69	Comb macromolecules with attracting functional groups in side chains. Polymer Science - Series A, 2007, 49, 1233-1241.	1.0	4
70	Effect of iron particles on dielectric properties of polydimethylsiloxane near crystallization and glass transition temperatures. Polymer Science - Series B, 2006, 48, 267-270.	0.8	5
71	Polyelectrolyte networks as highly sensitive polymers. Polymer Science - Series C, 2006, 48, 1-20.	1.7	51
72	Effect of a homogeneous magnetic field on the mechanical behavior of soft magnetic elastomers under compression. Polymer Science - Series A, 2006, 48, 138-145.	1.0	67

#	ARTICLE	IF	CITATIONS
73	Stoichiometric polyelectrolyte complexes of ionic block copolymers and oppositely charged polyions. Journal of Chemical Physics, 2006, 125, 194902.	3.0	54
74	Stoichiometric polyelectrolyte complexes as comb copolymers. Journal of Chemical Physics, 2005, 122, 084902.	3.0	28
75	Micelle formation in a dilute solution of block copolymers with a polyelectrolyte block complexed with oppositely charged linear chains. Journal of Chemical Physics, 2003, 119, 4945-4952.	3.0	26
76	The Influence of Ion Pair Formation on the Phase Behavior of Polyelectrolyte Solutions. Macromolecular Theory and Simulations, 2002, 11, 462.	1.4	43
77	Formation of Salt Bonds in Polyampholyte Chains. Macromolecular Theory and Simulations, 2001, 10, 780-788.	1.4	31
78	A threeâ€state model for counterions in a dilute solution of weakly charged polyelectrolytes. Macromolecular Theory and Simulations, 2000, 9, 249-256.	1.4	43
79	Collapse of Polyelectrolyte Macromolecules Revisited. Macromolecules, 1997, 30, 3383-3388.	4.8	85
80	Weakly Charged Polyelectrolytes:  Collapse Induced by Extra Ionization. Macromolecules, 1996, 29, 681-685.	4.8	136
81	Molecular dynamics simulation study of adsorption of polymer chains with variable degree of rigidity. I. Static properties. Journal of Chemical Physics, 1996, 104, 4806-4813.	3.0	73
82	Polyelectrolyte/Ionomer behavior in polymer gel collapse. Macromolecular Theory and Simulations, 1994, 3, 45-59.	1.4	113
83	Collapse of a polymer gel induced by complex formation with linear polymers. Die Makromolekulare Chemie Theory and Simulations, 1993, 2, 169-177.	1.0	10
84	Collapse of polyelectrolyte networks induced by their interaction with an oppositely charged surfactant. Theory. Die Makromolekulare Chemie Theory and Simulations, 1992, 1, 105-118.	1.0	89