
W Paul Duprex

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8002695/publications.pdf Version: 2024-02-01

W/ DALLE DUDDEY

#	Article	IF	CITATIONS
1	Superimmunity by pan-sarbecovirus nanobodies. Cell Reports, 2022, 39, 111004.	2.9	13
2	Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. Science, 2021, 371, 1139-1142.	6.0	475
3	Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. Science Advances, 2021, 7, .	4.7	113
4	Human Respiratory Syncytial Virus Subgroup A and B Infections in Nasal, Bronchial, Small-Airway, and Organoid-Derived Respiratory Cultures. MSphere, 2021, 6, .	1.3	14
5	Comparable Infection Level and Tropism of Measles Virus and Canine Distemper Virus in Organotypic Brain Slice Cultures Obtained from Natural Host Species. Viruses, 2021, 13, 1582.	1.5	1
6	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	0.9	62
7	Sustained Replication of Synthetic Canine Distemper Virus Defective Genomes <i>In Vitro</i> and <i>In Vivo</i> . MSphere, 2021, 6, e0053721.	1.3	9
8	Memory B cell repertoire for recognition of evolving SARS-CoV-2 spike. Cell, 2021, 184, 4969-4980.e15.	13.5	94
9	Intractable Coronavirus Disease 2019 (COVID-19) and Prolonged Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Replication in a Chimeric Antigen Receptor-Modified T-Cell Therapy Recipient: A Case Study. Clinical Infectious Diseases, 2021, 73, e815-e821.	2.9	113
10	People critically ill with COVID-19 exhibit peripheral immune profiles predictive of mortality and reflective of SARS-CoV-2 lung viral burden. Cell Reports Medicine, 2021, 2, 100476.	3.3	11
11	SARS-CoV-2 infection of African green monkeys results in mild respiratory disease discernible by PET/CT imaging and shedding of infectious virus from both respiratory and gastrointestinal tracts. PLoS Pathogens, 2020, 16, e1008903.	2.1	110
12	Animal models for COVID-19. Nature, 2020, 586, 509-515.	13.7	705
13	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	0.9	184
14	Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2. Science, 2020, 370, 1479-1484.	6.0	306
15	Labyrinthopeptins as virolytic inhibitors of respiratory syncytial virus cell entry. Antiviral Research, 2020, 177, 104774.	1.9	30
16	Inhibition of Nipah Virus by Defective Interfering Particles. Journal of Infectious Diseases, 2020, 221, S460-S470.	1.9	23
17	Measles pathogenesis, immune suppression and animal models. Current Opinion in Virology, 2020, 41, 31-37.	2.6	19
18	In vivo comparison of a laboratory-adapted and clinical-isolate-based recombinant human respiratory syncytial virus. Journal of General Virology, 2020, 101, 1037-1046.	1.3	4

#	Article	IF	CITATIONS
19	Recombinant subtype A and B human respiratory syncytial virus clinical isolates co-infect the respiratory tract of cotton rats. Journal of General Virology, 2020, 101, 1056-1068.	1.3	5
20	SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using serum from acutely infected hospitalized COVID-19 patients. Journal of General Virology, 2020, 101, 1156-1169.	1.3	131
21	Measles skin rash: Infection of lymphoid and myeloid cells in the dermis precedes viral dissemination to the epidermis. PLoS Pathogens, 2020, 16, e1008253.	2.1	13
22	Taxonomy of the order Mononegavirales: second update 2018. Archives of Virology, 2019, 164, 1233-1244.	0.9	70
23	mSphere of Influence: the View from the Microbiologists of the Future. MSphere, 2019, 4, .	1.3	Ο
24	Taxonomy of the order Mononegavirales: update 2019. Archives of Virology, 2019, 164, 1967-1980.	0.9	224
25	Comparative Loss-of-Function Screens Reveal ABCE1 as an Essential Cellular Host Factor for Efficient Translation of <i>Paramyxoviridae</i> and <i>Pneumoviridae</i> . MBio, 2019, 10, .	1.8	24
26	Novel feline viruses: Emerging significance of gammaherpesvirus and morbillivirus infections. Journal of Feline Medicine and Surgery, 2019, 21, 5-11.	0.6	9
27	Completion of an Experiment. MSphere, 2018, 3, .	1.3	Ο
28	Paramyxovirus Infections in Ex Vivo Lung Slice Cultures of Different Host Species. Methods and Protocols, 2018, 1, 12.	0.9	9
29	Macrophages and Dendritic Cells Are the Predominant Cells Infected in Measles in Humans. MSphere, 2018, 3, .	1.3	38
30	A novel mutation in the neuraminidase gene of the 2009 pandemic H1N1 influenza A virus confers multidrug resistance. Journal of General Virology, 2018, 99, 275-276.	1.3	2
31	Whether you are a virus or a learned society-based virology journal, evolution is critical for success!. Journal of General Virology, 2018, 99, 1-2.	1.3	Ο
32	Efficient and Robust <i>Paramyxoviridae</i> Reverse Genetics Systems. MSphere, 2017, 2, .	1.3	55
33	Needle-free delivery of measles virus vaccine to the lower respiratory tract of non-human primates elicits optimal immunity and protection. Npj Vaccines, 2017, 2, 22.	2.9	32
34	Idiosyncratic MòjiÄng virus attachment glycoprotein directs a host-cell entry pathway distinct from genetically related henipaviruses. Nature Communications, 2017, 8, 16060.	5.8	46
35	Deep sequencing reveals persistence of cell-associated mumps vaccine virus in chronic encephalitis. Acta Neuropathologica, 2017, 133, 139-147.	3.9	41
36	Delineating morbillivirus entry, dissemination and airborne transmission by studying in vivo competition of multicolor canine distemper viruses in ferrets. PLoS Pathogens, 2017, 13, e1006371.	2.1	37

#	Article	IF	CITATIONS
37	Chronic Infection of Domestic Cats with Feline Morbillivirus, United States. Emerging Infectious Diseases, 2016, 22, 760-762.	2.0	55
38	Inactivation of RNA Viruses by Gamma Irradiation: A Study on Mitigating Factors. Viruses, 2016, 8, 204.	1.5	50
39	Measles Virus Host Invasion and Pathogenesis. Viruses, 2016, 8, 210.	1.5	123
40	Multiplexed Metagenomic Deep Sequencing To Analyze the Composition of High-Priority Pathogen Reagents. MSystems, 2016, 1, .	1.7	19
41	Cross-reactive and cross-neutralizing activity of human mumps antibodies against a novel mumps virus from bats. Journal of Infectious Diseases, 2016, 215, jiw534.	1.9	7
42	Mapping the evolutionary trajectories of morbilliviruses: what, where and whither. Current Opinion in Virology, 2016, 16, 95-105.	2.6	43
43	Optimization and Dose Estimation of Aerosol Delivery to Non-Human Primates. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2016, 29, 281-287.	0.7	20
44	Communicate, educate: tackling misconceptions to boost vaccine uptake. Future Virology, 2015, 10, 1029-1032.	0.9	0
45	Molecular biology, pathogenesis and pathology of mumps virus. Journal of Pathology, 2015, 235, 242-252.	2.1	164
46	Morbillivirus Infections: An Introduction. Viruses, 2015, 7, 699-706.	1.5	69
47	Recombinant Subgroup B Human Respiratory Syncytial Virus Expressing Enhanced Green Fluorescent Protein Efficiently Replicates in Primary Human Cells and Is Virulent in Cotton Rats. Journal of Virology, 2015, 89, 2849-2856.	1.5	26
48	Pathological consequences of systemic measles virus infection. Journal of Pathology, 2015, 235, 253-265.	2.1	69
49	Gain-of-function experiments: time for a real debate. Nature Reviews Microbiology, 2015, 13, 58-64.	13.6	49
50	Live-Attenuated Measles Virus Vaccine Targets Dendritic Cells and Macrophages in Muscle of Nonhuman Primates. Journal of Virology, 2015, 89, 2192-2200.	1.5	53
51	In memoriam – Richard M. Elliott (1954–2015). Journal of General Virology, 2015, 96, 1975-1978.	1.3	4
52	Streptococcus pneumoniae Enhances Human Respiratory Syncytial Virus Infection In Vitro and In Vivo. PLoS ONE, 2015, 10, e0127098.	1.1	42
53	Phocine Distemper Virus: Current Knowledge and Future Directions. Viruses, 2014, 6, 5093-5134.	1.5	114
54	Falling down the Rabbit Hole: aTRIP Toward Lexiconic Precision in the "Gain-of-Function―Debate. MBio, 2014, 5, .	1.8	1

#	Article	IF	CITATIONS
55	Using the ferret model to study morbillivirus entry, spread, transmission and cross-species infection. Current Opinion in Virology, 2014, 4, 15-23.	2.6	40
56	Measles Virus Suppresses RIG-I-like Receptor Activation in Dendritic Cells via DC-SIGN-Mediated Inhibition of PP1 Phosphatases. Cell Host and Microbe, 2014, 16, 31-42.	5.1	89
57	Antagonism of the Phosphatase PP1 by the Measles Virus V Protein Is Required for Innate Immune Escape of MDA5. Cell Host and Microbe, 2014, 16, 19-30.	5.1	109
58	Measles Vaccination of Nonhuman Primates Provides Partial Protection against Infection with Canine Distemper Virus. Journal of Virology, 2014, 88, 4423-4433.	1.5	44
59	Infection of lymphoid tissues in the macaque upper respiratory tract contributes to the emergence of transmissible measles virus. Journal of General Virology, 2013, 94, 1933-1944.	1.3	39
60	Paramyxovirus infections in ex vivo lung slice cultures of different host species. Journal of Virological Methods, 2013, 193, 159-165.	1.0	25
61	Determination of Spontaneous Mutation Frequencies in Measles Virus under Nonselective Conditions. Journal of Virology, 2013, 87, 2686-2692.	1.5	23
62	Measles Virus Infection of Epithelial Cells in the Macaque Upper Respiratory Tract Is Mediated by Subepithelial Immune Cells. Journal of Virology, 2013, 87, 4033-4042.	1.5	59
63	Measles Immune Suppression: Lessons from the Macaque Model. PLoS Pathogens, 2012, 8, e1002885.	2.1	146
64	Live-cell visualization of transmembrane protein oligomerization and membrane fusion using two-fragment haptoEGFP methodology. Bioscience Reports, 2012, 32, 333-343.	1.1	4
65	Recent Mumps Outbreaks in Vaccinated Populations: No Evidence of Immune Escape. Journal of Virology, 2012, 86, 615-620.	1.5	89
66	Recombinant Canine Distemper Virus Strain Snyder Hill Expressing Green or Red Fluorescent Proteins Causes Meningoencephalitis in the Ferret. Journal of Virology, 2012, 86, 7508-7519.	1.5	44
67	The innate antiviral factor APOBEC3G targets replication of measles, mumps and respiratory syncytial viruses. Journal of General Virology, 2012, 93, 565-576.	1.3	49
68	The pathogenesis of measles. Current Opinion in Virology, 2012, 2, 248-255.	2.6	90
69	Rinderpest eradication: lessons for measles eradication?. Current Opinion in Virology, 2012, 2, 330-334.	2.6	42
70	Evaluation of synthetic infection-enhancing lipopeptides as adjuvants for a live-attenuated canine distemper virus vaccine administered intra-nasally to ferrets. Vaccine, 2012, 30, 5073-5080.	1.7	8
71	A Prominent Role for DC-SIGN+ Dendritic Cells in Initiation and Dissemination of Measles Virus Infection in Non-Human Primates. PLoS ONE, 2012, 7, e49573.	1.1	35
72	Towards ambient temperature-stable vaccines: The identification of thermally stabilizing liquid formulations for measles virus using an innovative high-throughput infectivity assay. Vaccine, 2011, 29, 5031-5039.	1.7	47

#	Article	IF	CITATIONS
73	New concepts in measles virus replication: Getting in and out in vivo and modulating the host cell environment. Virus Research, 2011, 162, 47-62.	1.1	15
74	Gene-Specific Contributions to Mumps Virus Neurovirulence and Neuroattenuation. Journal of Virology, 2011, 85, 7059-7069.	1.5	25
75	Discrimination of Mumps Virus Small Hydrophobic Gene Deletion Effects from Gene Translation Effects on Virus Virulence. Journal of Virology, 2011, 85, 6082-6085.	1.5	16
76	Early Target Cells of Measles Virus after Aerosol Infection of Non-Human Primates. PLoS Pathogens, 2011, 7, e1001263.	2.1	181
77	<i>In Vivo</i> Tropism of Attenuated and Pathogenic Measles Virus Expressing Green Fluorescent Protein in Macaques. Journal of Virology, 2010, 84, 4714-4724.	1.5	95
78	Quantitative Proteomic Analysis of A549 Cells Infected with Human Respiratory Syncytial Virus. Molecular and Cellular Proteomics, 2010, 9, 2438-2459.	2.5	82
79	Wild-type measles virus infection of primary epithelial cells occurs via the basolateral surface without syncytium formation or release of infectious virus. Journal of General Virology, 2010, 91, 971-979.	1.3	48
80	A Point Mutation, E95D, in the Mumps Virus V Protein Disengages STAT3 Targeting from STAT1 Targeting. Journal of Virology, 2009, 83, 6347-6356.	1.5	24
81	Presence of lysine at aa 335 of the hemagglutinin-neuraminidase protein of mumps virus vaccine strain Urabe AM9 is not a requirement for neurovirulence. Vaccine, 2009, 27, 5822-5829.	1.7	12
82	Molecular differences between two Jeryl Lynn mumps virus vaccine component strains, JL5 and JL2. Journal of General Virology, 2009, 90, 2973-2981.	1.3	22
83	Advantages of using recombinant measles viruses expressing a fluorescent reporter gene with vibratome slice technology in experimental measles neuropathogenesis. Neuropathology and Applied Neurobiology, 2008, 34, 424-434.	1.8	18
84	Foot-and-Mouth Disease Virus, but Not Bovine Enterovirus, Targets the Host Cell Cytoskeleton via the Nonstructural Protein 3C ^{pro} . Journal of Virology, 2008, 82, 10556-10566.	1.5	45
85	Predominant Infection of CD150+ Lymphocytes and Dendritic Cells during Measles Virus Infection of Macaques. PLoS Pathogens, 2007, 3, e178.	2.1	226
86	Measles virus M and F proteins associate with detergent-resistant membrane fractions and promote formation of virus-like particles. Journal of General Virology, 2007, 88, 1243-1250.	1.3	70
87	The F Gene of Rodent Brain-Adapted Mumps Virus Is a Major Determinant of Neurovirulence. Journal of Virology, 2007, 81, 8293-8302.	1.5	40
88	Development of a Challenge-Protective Vaccine Concept by Modification of the Viral RNA-Dependent RNA Polymerase of Canine Distemper Virus. Journal of Virology, 2007, 81, 13649-13658.	1.5	37
89	Measles virus minigenomes encoding two autofluorescent proteins reveal cell-to-cell variation in reporter expression dependent on viral sequences between the transcription units. Journal of General Virology, 2007, 88, 2710-2718.	1.3	14
90	Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nature Immunology, 2007, 8, 772-779.	7.0	406

#	Article	IF	CITATIONS
91	Two functionally linked amino acids in the stem 2 region of measles virus haemagglutinin determine infectivity and virulence in the rodent central nervous system. Journal of General Virology, 2007, 88, 3112-3120.	1.3	17
92	Morbilliviruses and human disease. Journal of Pathology, 2006, 208, 199-214.	2.1	92
93	CD9-dependent regulation of Canine distemper virus-induced cell–cell fusion segregates with the extracellular domain of the haemagglutinin. Journal of General Virology, 2006, 87, 1635-1642.	1.3	18
94	A mouse model of persistent brain infection with recombinant Measles virus. Journal of General Virology, 2006, 87, 2011-2019.	1.3	27
95	Dynamics of Viral RNA Synthesis during Measles Virus Infection. Journal of Virology, 2005, 79, 6900-6908.	1.5	107
96	â€~Rescue' of mini-genomic constructs and viruses by combinations of morbillivirus N, P and L proteins. Journal of General Virology, 2005, 86, 1077-1081.	1.3	30
97	Measles virus superinfection immunity and receptor redistribution in persistently infected NT2 cells. Journal of General Virology, 2005, 86, 2291-2303.	1.3	22
98	Rational Attenuation of a Morbillivirus by Modulating the Activity of the RNA-Dependent RNA Polymerase. Journal of Virology, 2005, 79, 14330-14338.	1.5	41
99	Molecular mechanisms of measles virus persistence. Virus Research, 2005, 111, 132-147.	1.1	105
100	BRCA1 Interacts with and Is Required for Paclitaxel-Induced Activation of Mitogen-Activated Protein Kinase Kinase Kinase 3. Cancer Research, 2004, 64, 4148-4154.	0.4	46
101	Modulating the Function of the Measles Virus RNA-Dependent RNA Polymerase by Insertion of Green Fluorescent Protein into the Open Reading Frame. Journal of Virology, 2002, 76, 7322-7328.	1.5	80
102	Hemagglutinin Protein of Wild-Type Measles Virus Activates Toll-Like Receptor 2 Signaling. Journal of Virology, 2002, 76, 8729-8736.	1.5	435
103	Using Green Fluorescent Protein to Monitor Measles Virus Cell-to-Cell Spread by Time-Lapse Confocal Microscopy. , 2002, 183, 297-307.		5
104	Infection of human oligodendroglioma cells by a recombinant measles virus expressing enhanced green fluorescent protein. Journal of NeuroVirology, 2002, 8, 24-34.	1.0	18
105	Polyploid measles virus with hexameric genome length. EMBO Journal, 2002, 21, 2364-2372.	3.5	106
106	Analysis of receptor (CD46, CD150) usage by measles virus. Journal of General Virology, 2002, 83, 1431-1436.	1.3	89
107	Non-detection of Chlamydia species in carotid atheroma using generic primers by nested PCR in a population with a high prevalence of Chlamydia pneumoniae antibody. BMC Infectious Diseases, 2001, 1, 12.	1.3	25
108	Recombinant Measles Viruses Expressing Altered Hemagglutinin (H) Genes: Functional Separation of Mutations Determining H Antibody Escape from Neurovirulence. Journal of Virology, 2001, 75, 7612-7620.	1.5	38

#	Article	IF	CITATIONS
109	Measles Virus-Induced Disruption of the Glial-Fibrillary-Acidic Protein Cytoskeleton in an Astrocytoma Cell Line (U-251). Journal of Virology, 2000, 74, 3874-3880.	1.5	25
110	Establishment of a Rescue System for Canine Distemper Virus. Journal of Virology, 2000, 74, 10737-10744.	1.5	54
111	In Vitro and In Vivo Infection of Neural Cells by a Recombinant Measles Virus Expressing Enhanced Green Fluorescent Protein. Journal of Virology, 2000, 74, 7972-7979.	1.5	66
112	Observation of Measles Virus Cell-to-Cell Spread in Astrocytoma Cells by Using a Green Fluorescent Protein-Expressing Recombinant Virus. Journal of Virology, 1999, 73, 9568-9575.	1.5	183
113	The H Gene of Rodent Brain-Adapted Measles Virus Confers Neurovirulence to the Edmonston Vaccine Strain. Journal of Virology, 1999, 73, 6916-6922.	1.5	61
114	Nitric oxide synthase activity and expression in retinal capillary endothelial cells and pericytes. Current Eye Research, 1995, 14, 285-294.	0.7	98