
José M Gallego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8002385/publications.pdf

Version: 2024-02-01

OSÃO M CALLECO

#	Article	IF	CITATIONS
1	Charge-transfer-induced structural rearrangements at both sides of organic/metal interfaces. Nature Chemistry, 2010, 2, 374-379.	13.6	273
2	Molecular Selfâ€Assembly at Solid Surfaces. Advanced Materials, 2011, 23, 5148-5176.	21.0	192
3	Influence of the growth conditions on the magnetic properties of fcc cobalt films: from monolayers to superlattices. Journal of Magnetism and Magnetic Materials, 1991, 93, 1-9.	2.3	181
4	Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces. Surface Science Reports, 2017, 72, 105-145.	7.2	161
5	Antiferromagnetic ordering in Co-Cu single-crystal superlattices. Physical Review B, 1989, 39, 9726-9729.	3.2	145
6	Atomistic Mechanism of Surfactant-Assisted Epitaxial Growth. Physical Review Letters, 1998, 81, 850-853.	7.8	123
7	The surface morphology of a growing crystal studied by thermal energy atom scattering (TEAS). Surface Science, 1987, 189-190, 1062-1068.	1.9	120
8	Ordering Fullerenes at the Nanometer Scale on Solid Surfaces. Chemical Reviews, 2009, 109, 2081-2091.	47.7	113
9	The Fe/Si(100) interface. Journal of Applied Physics, 1991, 69, 1377-1383.	2.5	90
10	Metallization-induced spontaneous silicide formation at room temperature: The Fe/Si case. Physical Review B, 1992, 46, 13339-13344.	3.2	90
11	Increased exchange anisotropy due to disorder at permalloy/CoO interfaces. Journal of Applied Physics, 1995, 78, 1887-1891.	2.5	87
12	Quantitative evaluation of the perfection of an epitaxial film grown by vapor deposition as determined by thermal energy atom scattering. Journal of Crystal Growth, 1988, 88, 442-454.	1.5	82
13	Characterization of the growth processes and magnetic properties of thin ferromagnetic cobalt films on Cu(100). Surface Science, 1989, 211-212, 732-739.	1.9	82
14	Formation of a surface covalent organic framework based on polyester condensation. Chemical Communications, 2012, 48, 6779.	4.1	82
15	Crossover Site‣electivity in the Adsorption of the Fullerene Derivative PCBM on Au(111). Angewandte Chemie - International Edition, 2007, 46, 7874-7877.	13.8	70
16	Thermal selectivity of intermolecular versus intramolecular reactions on surfaces. Nature Communications, 2016, 7, 11002.	12.8	66
17	Mechanisms of epitaxial growth and magnetic properties ofγ′â^'Fe4N(100)films onCu(100). Physical Review B, 2004, 70, .	3.2	65
18	Shape Evolution of CdSe Nanoparticles Controlled by Halogen Compounds. Chemistry of Materials, 2014, 26, 1813-1821.	6.7	65

JOSé M GALLEGO

#	Article	IF	CITATIONS
19	Molecular Conformation, Organizational Chirality, and Iron Metalation of meso-Tetramesitylporphyrins on Copper(100). Journal of Physical Chemistry C, 2008, 112, 8988-8994.	3.1	64
20	An Organic Donor/Acceptor Lateral Superlattice at the Nanoscale. Nano Letters, 2007, 7, 2602-2607.	9.1	59
21	Fe thin-film growth on Au(100): A self-surfactant effect and its limitations. Physical Review B, 1999, 59, 15966-15974.	3.2	58
22	Self-surfactant effect on Fe/Au(100):. Surface Science, 1998, 415, 106-121.	1.9	56
23	Growth of cobalt and cobalt disilicide on Si(100). Surface Science, 1990, 239, 203-212.	1.9	49
24	Oscillatory Behavior of the Transport Properties in Ni/Co Multilayers: A Superlattice Effect. Physical Review Letters, 1995, 74, 4515-4518.	7.8	46
25	Surface characterization of epitaxial, semiconducting, FeSi2grown on Si(100). Applied Physics Letters, 1991, 59, 99-101.	3.3	45
26	Surfaceâ€Supported Robust 2D Lanthanideâ€Carboxylate Coordination Networks. Small, 2015, 11, 6358-6364.	10.0	43
27	Influence of surfactants on atomic diffusion. Surface Science, 2000, 459, 135-148.	1.9	36
28	Unravelling the Open-Shell Character of Peripentacene on Au(111). Journal of Physical Chemistry Letters, 2021, 12, 330-336.	4.6	36
29	Large magnetoresistance with low saturation fields in magnetic/magnetic superlattices. Applied Physics Letters, 1994, 64, 2590-2592.	3.3	31
30	1D Lattice Distortions as the Origin of the(2×2)p4gmReconstruction inγâ€2â^'Fe4N(100): A Magnetism-Induced Surface Reconstruction. Physical Review Letters, 2005, 95, 136102.	7.8	31
31	Electronic structure of ultrathinγ′â^'Fe4N(100) films epitaxially grown on Cu(100). Physical Review B, 2007, 75, .	3.2	30
32	Magnetisation reversal of epitaxial films of γ′-Fe4N on Cu(100). Journal of Magnetism and Magnetic Materials, 2007, 316, 321-324.	2.3	29
33	The growth and characterization of iron silicides on Si(100). Surface Science, 1991, 251-252, 59-63.	1.9	28
34	Temperature-controlled metal/ligand stoichiometric ratio in Ag-TCNE coordination networks. Journal of Chemical Physics, 2015, 142, 101930.	3.0	28
35	Dysprosium-carboxylate nanomeshes with tunable cavity size and assembly motif through ionic interactions. Chemical Communications, 2016, 52, 11227-11230.	4.1	26
36	Epitaxial growth of metals with high Ehrlich-Schwoebel barriers and the effect of surfactants. Applied Physics A: Materials Science and Processing, 1999, 69, 553-557.	2.3	25

JOSé M GALLEGO

#	Article	IF	CITATIONS
37	Self-assembled magnetic nitride dots on Cu(100) surfaces. Physical Review B, 2004, 69, .	3.2	25
38	Protective Ligand Shells for Luminescent SiO ₂ -Coated Alloyed Semiconductor Nanocrystals. ACS Applied Materials & Interfaces, 2015, 7, 6935-6945.	8.0	25
39	Effect of Chloride Ligands on CdSe Nanocrystals by Cyclic Voltammetry and X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 4998-5004.	3.1	24
40	Long-Range Orientational Self-Assembly, Spatially Controlled Deprotonation, and Off-Centered Metalation of an Expanded Porphyrin. Journal of the American Chemical Society, 2017, 139, 14129-14136.	13.7	23
41	Epitaxial growth of metals: Experimental results and Monte Carlo simulation. Surface Science, 1989, 211-212, 797-803.	1.9	22
42	Role of Deprotonation and Cu Adatom Migration in Determining the Reaction Pathways of Oxalic Acid Adsorption on Cu(111). Journal of Physical Chemistry C, 2011, 115, 21177-21182.	3.1	22
43	Interfacing Quantum Dots and Graphitic Surfaces with Chlorine Atomic Ligands. ACS Nano, 2013, 7, 2559-2565.	14.6	22
44	Efficient Lanthanide Catalyzed Debromination and Oligomeric Length-Controlled Ullmann Coupling of Aryl Halides. Journal of Physical Chemistry C, 2017, 121, 8033-8041.	3.1	22
45	Growth and structural characterization of Ni/Co superlattices. Physical Review B, 1995, 51, 2550-2555.	3.2	20
46	Bimodal island-size distributions in submonolayer growth. Physical Review B, 2001, 64, .	3.2	20
47	Symmetry breaking effects in epitaxial magnetic thin films: Nonsymmetric reversal and butterfly remanence behavior. Physical Review B, 2008, 77, .	3.2	20
48	A scanning tunnelling microscopy view of the surfactant-assisted growth of iron on Cu(111). Surface Science, 2000, 462, 45-54.	1.9	19
49	Subphthalocyanine-based nanocrystals. Chemical Communications, 2011, 47, 9986.	4.1	19
50	Monte Carlo simulation of the growth of a Cu(100) surface from its own vapor; island nucleation and step propagation growth modes. Journal of Crystal Growth, 1988, 91, 481-489.	1.5	17
51	Growth and Structure of Self-assembled Monolayers of a TTF Derivative on Au(111). Journal of Physical Chemistry C, 2010, 114, 6503-6510.	3.1	16
52	Charge transfer-assisted self-limited decyanation reaction of TCNQ-type electron acceptors on Cu(100). Chemical Communications, 2014, 50, 833-835.	4.1	16
53	Interplay between π-Conjugation and Exchange Magnetism in One-Dimensional Porphyrinoid Polymers. Journal of the American Chemical Society, 2022, 144, 12725-12731.	13.7	15
54	Surfactant effect of Pb in the growth of Fe on Cu(111): A kinetic effect. Physical Review B, 2001, 65, .	3.2	14

José M Gallego

#	Article	IF	CITATIONS
55	Synthesis and Characterization of <i>peri</i> â€Heptacene on a Metallic Surface. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
56	Growth of epitaxial iron disilicide on Si(100). Surface Science, 1992, 269-270, 1016-1021.	1.9	13
57	Cl-capped CdSe nanocrystals via in situ generation of chloride anions. Nanoscale, 2014, 6, 6812-6818.	5.6	13
58	Initial growth of Fe on Au(100): preferential nucleation, place exchange and enhanced mass transport. Applied Physics A: Materials Science and Processing, 1998, 66, S1117-S1120.	2.3	12
59	Templated growth of an ordered array of organic bidimensional mesopores. Applied Physics Letters, 2008, 92, .	3.3	12
60	Dysprosium-directed metallosupramolecular network on graphene/Ir(111). Chemical Communications, 2021, 57, 1380-1383.	4.1	12
61	Onâ€Surface Synthesis of a Dicationic Diazahexabenzocoronene Derivative on the Au(111) Surface. Angewandte Chemie - International Edition, 2021, 60, 25551-25556.	13.8	12
62	Electron localization in Co/Ni superlattices. Physical Review B, 1996, 54, R5291-R5294.	3.2	11
63	Tuning Intermolecular Charge Transfer in Donor–Acceptor Two-Dimensional Crystals on Metal Surfaces. Journal of Physical Chemistry C, 2017, 121, 23505-23510.	3.1	11
64	The adsorption of atomic N and the growth of copper nitrides on Cu(1 0 0). Surface Science, 2009, 603, 2283-2289.	1.9	10
65	An STM study of molecular exchange processes in organic thin film growth. Chemical Communications, 2014, 50, 9954-9957.	4.1	9
66	A Comparative Computational Study of the Adsorption of TCNQ and F4-TCNQ on the Coinage Metal Surfaces. ACS Omega, 2019, 4, 16906-16915.	3.5	9
67	Cumulene-like bridged indeno[1,2- <i>b</i>]fluorene π-conjugated polymers synthesized on metal surfaces. Chemical Communications, 2021, 57, 7545-7548.	4.1	9
68	Surface assembly of porphyrin nanorods with one-dimensional zinc–oxygen spinal cords. CrystEngComm, 2011, 13, 5591.	2.6	8
69	Role of the Anchored Groups in the Bonding and Self-Organization of Macrocycles: Carboxylic versus Pyrrole Groups. Journal of Physical Chemistry C, 2013, 117, 7661-7668.	3.1	8
70	Shell or Dots â^' Precursor Controlled Morphology of Au–Se Deposits on CdSe Nanoparticles. Chemistry of Materials, 2016, 28, 2704-2714.	6.7	8
71	Tuning the Magnetic Anisotropy of Lanthanides on a Metal Substrate by Metal–Organic Coordination. Small, 2021, 17, e2102753.	10.0	8
72	Engineering Periodic Dinuclear Lanthanideâ€Directed Networks Featuring Tunable Energy Level Alignment and Magnetic Anisotropy by Metal Exchange. Small, 2022, 18, e2107073.	10.0	8

JOSé M GALLEGO

#	Article	IF	CITATIONS
73	Neutron-diffraction study on the field dependent magnetic ordering in Co—Cu superlattices. Journal of Magnetism and Magnetic Materials, 1991, 93, 89-94.	2.3	7
74	Superlattice effect in the transport properties of Ni/Co multilayers. Journal of Magnetism and Magnetic Materials, 1998, 183, 261-271.	2.3	7
75	Relating Surface Structure and Growth Mode of γ′Fe4N. Surface Review and Letters, 2003, 10, 405-411.	1.1	7
76	Preservation of electronic properties of double-decker complexes on metallic supports. Physical Chemistry Chemical Physics, 2017, 19, 8282-8287.	2.8	7
77	Defect-Induced π-Magnetism into Non-Benzenoid Nanographenes. Nanomaterials, 2022, 12, 224.	4.1	7
78	Surfaceâ€Assisted Synthesis of N <i>â€</i> Containing <i>Ï€</i> Onjugated Polymers. Advanced Science, 2022, 9, .	11.2	7
79	Epitaxial growth of metals: from monolayer to superlattice. Vacuum, 1990, 41, 482-484.	3.5	6
80	A combined LEIS/STM study of two types of surface reconstruction of magnetic Fe4N layers. Nuclear Instruments & Methods in Physics Research B, 2004, 219-220, 593-598.	1.4	6
81	Formation of Self-Assembled Chains of Tetrathiafulvalene on a Cu(100) Surface. Journal of Physical Chemistry A, 2011, 115, 13080-13087.	2.5	6
82	Comparison between surface and bulk hysteresis loops in amorphous wires. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 1435-1438.	2.3	5
83	Thermal Ligand Desorption in CdSe Quantum Dots by Correlated XPS and STM. Particle and Particle Systems Characterization, 2016, 33, 358-362.	2.3	5
84	Metal-Coordination Network vs Charge Transfer Complex: The Importance of the Surface. Journal of Physical Chemistry C, 2020, 124, 7922-7929.	3.1	5
85	Electrically Tunable Reactivity of Substrateâ€Supported Cobalt Oxide Nanocrystals. Small, 2022, 18, e2106407.	10.0	5
86	Synthesis and Characterization of <i>peri</i> â€Heptacene on a Metallic Surface. Angewandte Chemie, 2022, 134, .	2.0	5
87	Thermal Transition from a Disordered, 2D Network to a Regular, 1D, Fe(II)–DCNQI Coordination Network. Journal of Physical Chemistry C, 2016, 120, 16712-16721.	3.1	4
88	Lanthanide-porphyrin species as Kondo irreversible switches through tip-induced coordination chemistry. Nanoscale, 2021, 13, 8600-8606.	5.6	4
89	Magnetization Processes Analysis in Co-Cu Superlattices. Materials Research Society Symposia Proceedings, 1989, 151, 117.	0.1	3
90	Oscillations of the transport properties in Ni/Co superlattices. Journal of Magnetism and Magnetic Materials, 1996, 156, 397-398.	2.3	3

José M Gallego

#	Article	IF	CITATIONS
91	Charge-Transfer-Induced Isomerization of DCNQI on Cu(100). Journal of Physical Chemistry C, 2014, 118, 27388-27392.	3.1	3
92	Collective concerted motion in a molecular adlayer visualized through the surface diffusion of isolated vacancies. Journal of Chemical Physics, 2016, 145, 154706.	3.0	2
93	Discrete Electronic Subbands due to Bragg Scattering at Molecular Edges. Physical Review Letters, 2019, 122, 176801.	7.8	2
94	A structural characterization of the buffer layer for growth of magnetically coupled Co/Cu superlattices. Journal of Magnetism and Magnetic Materials, 1993, 121, 20-23.	2.3	1
95	Magnetization processes in ultrathin films with high magnetization and perpendicular anisotropy. Journal of Magnetism and Magnetic Materials, 1996, 156, 145-147.	2.3	1
96	Metallic nanoislands: preferential nucleation, intermixing and electronic states. Journal of Physics Condensed Matter, 2002, 14, 4187-4198.	1.8	1
97	On the Magnetic Properties of Ultrathin Epitaxial Cobalt Films and Superlattices. NATO ASI Series Series B: Physics, 1990, , 483-499.	0.2	1
98	Spatiotemporal evolution of reaction fronts trigger by tunneling electrons. Journal of Physics: Conference Series, 2012, 388, 052070.	0.4	0
99	Innentitelbild: Synthesis and Characterization of <i>peri</i> â€Heptacene on a Metallic Surface (Angew.) Tj ETQq1	10.7843	14 rgBT /O