
Shimon Edelman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8002269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Parental speech to typical and atypical populations: a study on linguistic partial repetition. Language Sciences, 2021, 83, 101311.	O.5	4
2	A possible evolutionary function of phenomenal conscious experience of pain. Neuroscience of Consciousness, 2021, 2021, niab012.	1.4	4
3	Dynamical Emergence Theory (DET): A Computational Account of Phenomenal Consciousness. Minds and Machines, 2020, 30, 1-21.	2.7	21
4	Cortical Transformation of Stimulus Space in Order to Linearize a Linearly Inseparable Task. Journal of Cognitive Neuroscience, 2020, 32, 2342-2355.	1.1	0
5	Dynamic Computation in Visual Thalamocortical Networks. Entropy, 2019, 21, 500.	1.1	9
6	Beyond uncertainty: A broader scope for "incentive hope―mechanisms and its implications. Behavioral and Brain Sciences, 2019, 42, e44.	0.4	3
7	The evolution of the capacity for language: the ecological context and adaptive value of a process of cognitive hijacking. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170052.	1.8	38
8	Damasio, Antonio, 2018. The Strange Order of Things: Life, Feeling, and the Making of Cultures. New York: Pantheon. 336 pages Evolutionary Studies in Imaginative Culture, 2018, 2, 119-124.	0.1	0
9	Language and other complex behaviors: Unifying characteristics, computational models, neural mechanisms. Language Sciences, 2017, 62, 91-123.	0.5	11
10	Fundamental computational constraints on the time course of perception and action. Progress in Brain Research, 2017, 236, 121-141.	0.9	3
11	The evolution of cognitive mechanisms in response to cultural innovations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7915-7922.	3.3	57
12	Dissociating the Effects of Relevance and Predictability on Visual Detection Sensitivity. Journal of Vision, 2017, 17, 149.	0.1	0
13	System, Subsystem, Hive: Boundary Problems in Computational Theories of Consciousness. Frontiers in Psychology, 2016, 7, 1041.	1.1	13
14	Happiness as an intrinsic motivator in reinforcement learning. Adaptive Behavior, 2016, 24, 292-305.	1.1	4
15	Acoustic sequences in nonâ€human animals: a tutorial review and prospectus. Biological Reviews, 2016, 91, 13-52.	4.7	213
16	Similarity, kernels, and the fundamental constraints on cognition. Journal of Mathematical Psychology, 2016, 70, 21-34.	1.0	5
17	The minority report: some common assumptions to reconsider in the modelling of the brain and behaviour. Journal of Experimental and Theoretical Artificial Intelligence, 2016, 28, 751-776.	1.8	18
18	The bottleneck may be the solution, not the problem. Behavioral and Brain Sciences, 2016, 39, e83.	0.4	2

#	Article	IF	CITATIONS
19	Between Pleasure and Contentment: Evolutionary Dynamics of Some Possible Parameters of Happiness. PLoS ONE, 2016, 11, e0153193.	1.1	19
20	To bee or not to bee?. Animal Sentience, 2016, 1, .	0.3	5
21	Juvenile zebra finches learn the underlying structural regularities of their fathers' song. Frontiers in Psychology, 2015, 6, 571.	1.1	23
22	Evolved to adapt: A computational approach to animal innovation and creativity. Environmental Epigenetics, 2015, 61, 350-368.	0.9	56
23	Varieties of perceptual truth and their possible evolutionary roots. Psychonomic Bulletin and Review, 2015, 22, 1519-1522.	1.4	4
24	The problem of multimodal concurrent serial order in behavior. Neuroscience and Biobehavioral Reviews, 2015, 56, 252-265.	2.9	9
25	Evolution of protolinguistic abilities as a by-product of learning to forage in structured environments. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150353.	1.2	53
26	Learning a Generative Probabilistic Grammar of Experience: A Process‣evel Model of Language Acquisition. Cognitive Science, 2015, 39, 227-267.	0.8	27
27	How to write a â€~how-to-build-a-brain' book. Trends in Cognitive Sciences, 2014, 18, 118-119.	4.0	0
28	The evolution of continuous learning of the structure of the environment. Journal of the Royal Society Interface, 2014, 11, 20131091.	1.5	22
29	Combining Classification with fMRI-Derived Complex Network Measures for Potential Neurodiagnostics. PLoS ONE, 2013, 8, e62867.	1.1	39
30	Vision, Reanimated and Reimagined. Perception, 2012, 41, 1116-1127.	0.5	7
31	Six Challenges to Theoretical and Philosophical Psychology. Frontiers in Psychology, 2012, 3, 219.	1.1	10
32	Renewing the respect for similarity. Frontiers in Computational Neuroscience, 2012, 6, 45.	1.2	24
33	Being in time. Advances in Consciousness Research, 2012, , 81-94.	0.2	2
34	The (lack of) mental life of some machines. Advances in Consciousness Research, 2012, , 95-120.	0.2	5
35	Towards a computational theory of experience. Consciousness and Cognition, 2011, 20, 807-827.	0.8	43
36	Regarding Reality: Some Consequences of Two Incapacities. Frontiers in Psychology, 2011, 2, 44.	1.1	3

3

#	Article	IF	CITATIONS
37	THE METAPHYSICS OF EMBODIMENT. International Journal of Machine Consciousness, 2011, 03, 321-325.	1.0	3
38	Survival in a world of probable objects: A fundamental reason for Bayesian enlightenment. Behavioral and Brain Sciences, 2011, 34, 197-198.	0.4	2
39	On Look-Ahead in Language: Navigating a Multitude of Familiar Paths. , 2011, , 170-189.		6
40	An empirical generative framework for computational modeling of language acquisition. Journal of Child Language, 2010, 37, 671-703.	0.8	56
41	General cognitive principles for learning structure in time and space. Trends in Cognitive Sciences, 2010, 14, 249-258.	4.0	148
42	Evolution of Dynamic Coordination. , 2010, , 59-82.		2
43	The neglected universals: Learnability constraints and discourse cues. Behavioral and Brain Sciences, 2009, 32, 471-472.	0.4	5
44	Learn locally, act globally: Learning language from variation set cues. Cognition, 2008, 109, 423-430.	1.1	219
45	A swan, a pike, and a crawfish walk into a bar. Journal of Experimental and Theoretical Artificial Intelligence, 2008, 20, 257-264.	1.8	4
46	On the nature of minds, or: truth and consequences. Journal of Experimental and Theoretical Artificial Intelligence, 2008, 20, 181-196.	1.8	60
47	Unsupervised learning of natural languages. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11629-11634.	3.3	241
48	The interaction of shape- and location-based priming in object categorisation: Evidence for a hybrid "what+where―representation stage. Vision Research, 2005, 45, 2065-2080.	0.7	28
49	Ted Briscoe (ed.), Linguistic evolution through language acquisition: formal and computational models. Cambridge: Cambridge University Press, 2002. Pp. vii+349 Journal of Linguistics, 2004, 40, 396-400.	0.5	Ο
50	Towards structural systematicity in distributed, statically bound visual representations. Cognitive Science, 2003, 27, 73-109.	0.8	70
51	Better limited systematicity in hand than structural descriptions in the bush: A reply to Hummel. Cognitive Science, 2003, 27, 331-332.	0.8	2
52	How seriously should we take Minimalist syntax?. Trends in Cognitive Sciences, 2003, 7, 60-61.	4.0	64
53	Generative grammar with a human face?. Behavioral and Brain Sciences, 2003, 26, 675-676.	0.4	1
54	Constraining the neural representation of the visual world. Trends in Cognitive Sciences, 2002, 6, 125-131.	4.0	29

#	Article	IF	CITATIONS
55	Multidimensional space: the final frontier. Nature Neuroscience, 2002, 5, 1252-1254.	7.1	7
56	Neural spaces: A general framework for the understanding of cognition?. Behavioral and Brain Sciences, 2001, 24, 664-665.	0.4	6
57	Imperfect Invariance to Object Translation in the Discrimination of Complex Shapes. Perception, 2001, 30, 707-724.	0.5	27
58	Brahe, looking for Kepler. Behavioral and Brain Sciences, 2000, 23, 538-540.	0.4	0
59	(Coarse coding of shape fragments) + (Retinotopy) â‰^ Representation of structure. Spatial Vision, 2000, 13, 255-264.	1.4	58
60	No reconstruction, no impenetrability (at least not much). Behavioral and Brain Sciences, 1999, 22, 376-376.	0.4	2
61	On the virtues of going all the way. Behavioral and Brain Sciences, 1999, 22, 614-614.	0.4	2
62	Visual Recognition and Categorization on the Basis of Similarities to Multiple Class Prototypes. International Journal of Computer Vision, 1999, 33, 201-228.	10.9	49
63	Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex. Neuron, 1999, 24, 187-203.	3.8	1,104
64	Representation and Recognition in Vision. , 1999, , .		275
65			
	A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Human Brain Mapping, 1998, 6, 316-328.	1.9	438
66	A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Human Brain Mapping, 1998, 6, 316-328. Representation of objective similarity among three-dimensional shapes in the monkey. Biological Cybernetics, 1998, 78, 1-7.	1.9 0.6	438 52
66 67	Mapping, 1998, 6, 316-328. Representation of objective similarity among three-dimensional shapes in the monkey. Biological		
	Mapping, 1998, 6, 316-328. Representation of objective similarity among three-dimensional shapes in the monkey. Biological Cybernetics, 1998, 78, 1-7.	0.6	52
67	 Mapping, 1998, 6, 316-328. Representation of objective similarity among three-dimensional shapes in the monkey. Biological Cybernetics, 1998, 78, 1-7. Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe. Neuron, 1998, 21, 191-202. Representation of object similarity in human vision: psychophysics and a computational model. Vision 	0.6 3.8	52 386
67 68	 Mapping, 1998, 6, 316-328. Representation of objective similarity among three-dimensional shapes in the monkey. Biological Cybernetics, 1998, 78, 1-7. Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe. Neuron, 1998, 21, 191-202. Representation of object similarity in human vision: psychophysics and a computational model. Vision Research, 1998, 38, 2229-2257. Stimulus-specific effects in face recognition over changes in viewpoint. Vision Research, 1998, 38, 	0.6 3.8 0.7	52 386 50
67 68 69	 Mapping, 1998, 6, 316-328. Representation of objective similarity among three-dimensional shapes in the monkey. Biological Cybernetics, 1998, 78, 1-7. Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe. Neuron, 1998, 21, 191-202. Representation of object similarity in human vision: psychophysics and a computational model. Vision Research, 1998, 38, 2229-2257. Stimulus-specific effects in face recognition over changes in viewpoint. Vision Research, 1998, 38, 2351-2363. 	0.6 3.8 0.7 0.7	52 386 50 135

#	Article	IF	CITATIONS
73	Learning as Extraction of Low-Dimensional Representations. Psychology of Learning and Motivation - Advances in Research and Theory, 1997, 36, 353-380.	0.5	36
74	A model of visual recognition and categorization. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 1191-1202.	1.8	98
75	Similarity, Connectionism, and the Problem of Representation in Vision. Neural Computation, 1997, 9, 701-720.	1.3	31
76	Competitive learning in biological and artificial neural computation. Trends in Cognitive Sciences, 1997, 1, 268-272.	4.0	2
77	Learning low-dimensional representations via the usage of multiple-class labels. Network: Computation in Neural Systems, 1997, 8, 259-281.	2.2	4
78	Generalization to Novel Images in Upright and Inverted Faces. Perception, 1996, 25, 443-461.	0.5	122
79	Representation of similarity as a goal of early visual processing. Network: Computation in Neural Systems, 1995, 6, 19-41.	2.2	11
80	Receptive field spaces and class-based generalization from a single view in face recognition. Network: Computation in Neural Systems, 1995, 6, 551-576.	2.2	48
81	How representation works is more important than what representations are. Behavioral and Brain Sciences, 1995, 18, 630-631.	0.4	0
82	An integrated approach to the study of object features in visual recognition. Network: Computation in Neural Systems, 1995, 6, 603-618.	2.2	0
83	Representation, similarity, and the chorus of prototypes. Minds and Machines, 1995, 5, 45-68.	2.7	135
84	Representation of Similarity in Three-Dimensional Object Discrimination. Neural Computation, 1995, 7, 408-423.	1.3	48
85	Representation of similarity as a goal of early visual processing. Network: Computation in Neural Systems, 1995, 6, 19-41.	2.2	9
86	Receptive field spaces and class-based generalization from a single view in face recognition. Network: Computation in Neural Systems, 1995, 6, 551-576.	2.2	8
87	Class similarity and viewpoint invariance in the recognition of 3D objects. Biological Cybernetics, 1995, 72, 207-220.	0.6	9
88	Canonical views in object representation and recognition. Vision Research, 1994, 34, 3037-3056.	0.7	50
89	Representing three-dimensional objects by sets of activities of receptive fields. Biological Cybernetics, 1993, 70, 37-45.	0.6	20
90	Models of Perceptual Learning in Vernier Hyperacuity. Neural Computation, 1993, 5, 695-718.	1.3	64

6

#	Article	IF	CITATIONS
91	Long-term learning in vernier acuity: Effects of stimulus orientation, range and of feedback. Vision Research, 1993, 33, 397-412.	0.7	268
92	Orientation dependence in the recognition of familiar and novel views of three-dimensional objects. Vision Research, 1992, 32, 2385-2400.	0.7	436
93	Learning of visual modules from examples: A framework for understanding adaptive visual performance. CVGIP Image Understanding, 1992, 56, 22-30.	1.3	11
94	Models of object recognition. Current Opinion in Neurobiology, 1991, 1, 270-273.	2.0	17
95	Reading cursive handwriting by alignment of letter prototypes. International Journal of Computer Vision, 1990, 5, 303-331.	10.9	47
96	Line connectivity algorithms for an asynchronous pyramid computer. Computer Vision, Graphics, and Image Processing, 1987, 40, 169-187.	1.1	13
97	A model of handwriting. Biological Cybernetics, 1987, 57, 25-36.	0.6	160
98	On What It Means to See, and WhatWe Can Do About It. , 0, , 69-86.		1