Nuoya Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8002150/publications.pdf Version: 2024-02-01

Νμογλ Υιν

#	Article	lF	CITATIONS
1	Silver Nanoparticle Exposure Attenuates the Viability of Rat Cerebellum Granule Cells through Apoptosis Coupled to Oxidative Stress. Small, 2013, 9, 1831-1841.	10.0	114
2	Silver nanoparticles induced neurotoxicity through oxidative stress in rat cerebral astrocytes is distinct from the effects of silver ions. NeuroToxicology, 2016, 52, 210-221.	3.0	101
3	Tetrabromobisphenol A (TBBPA): A controversial environmental pollutant. Journal of Environmental Sciences, 2020, 97, 54-66.	6.1	73
4	TBBPA and Its Alternatives Disturb the Early Stages of Neural Development by Interfering with the NOTCH and WNT Pathways. Environmental Science & Technology, 2018, 52, 5459-5468.	10.0	70
5	The Rise of Stem Cell Toxicology. Environmental Science & amp; Technology, 2015, 49, 5847-5848.	10.0	57
6	Prospects and Frontiers of Stem Cell Toxicology. Stem Cells and Development, 2017, 26, 1528-1539.	2.1	55
7	The short-chain perfluorinated compounds PFBS, PFHxS, PFBA and PFHxA, disrupt human mesenchymal stem cell self-renewal and adipogenic differentiation. Journal of Environmental Sciences, 2020, 88, 187-199.	6.1	52
8	Vitamin E attenuates silver nanoparticle-induced effects on body weight and neurotoxicity in rats. Biochemical and Biophysical Research Communications, 2015, 458, 405-410.	2.1	47
9	Evaluation of the early developmental neural toxicity of F-53B, as compared to PFOS, with an inÂvitro mouse stem cell differentiation model. Chemosphere, 2018, 204, 109-118.	8.2	47
10	Assessment of Bisphenol A (BPA) neurotoxicity in vitro with mouse embryonic stem cells. Journal of Environmental Sciences, 2015, 36, 181-187.	6.1	45
11	Silver nanoparticle exposure induces rat motor dysfunction through decrease in expression of calcium channel protein in cerebellum. Toxicology Letters, 2015, 237, 112-120.	0.8	40
12	Embryonic stem cell- and transcriptomics-based in vitro analyses reveal that bisphenols A, F and S have similar and very complex potential developmental toxicities. Ecotoxicology and Environmental Safety, 2019, 176, 330-338.	6.0	39
13	Bisphenol A and several derivatives exert neural toxicity in human neuron-like cells by decreasing neurite length. Food and Chemical Toxicology, 2020, 135, 111015.	3.6	36
14	DEP and DBP induce cytotoxicity in mouse embryonic stem cells and abnormally enhance neural ectoderm development. Environmental Pollution, 2018, 236, 21-32.	7.5	32
15	Environmental and human relevant PFOS and PFOA doses alter human mesenchymal stem cell self-renewal, adipogenesis and osteogenesis. Ecotoxicology and Environmental Safety, 2019, 169, 564-572.	6.0	32
16	PFOA and PFOS Disrupt the Generation of Human Pancreatic Progenitor Cells. Environmental Science and Technology Letters, 2018, 5, 237-242.	8.7	31
17	F–53B and PFOS treatments skew human embryonic stem cell inÂvitro cardiac differentiation towards epicardial cells by partly disrupting the WNT signaling pathway. Environmental Pollution, 2020, 261, 114153.	7.5	30
18	Toxicogenomic analyses of the effects of BDE-47/209, TBBPA/S and TCBPA on early neural development with a human embryonic stem cell in vitro differentiation system. Toxicology and Applied Pharmacology, 2019, 379, 114685.	2.8	29

Νυογά Υιν

#	Article	IF	CITATIONS
19	A human embryonic stem cell-based in vitro model revealed that ultrafine carbon particles may cause skin inflammation and psoriasis. Journal of Environmental Sciences, 2020, 87, 194-204.	6.1	29
20	TBBPA, TBBPS, and TCBPA disrupt hESC hepatic differentiation and promote the proliferation of differentiated cells partly via up-regulation of the FGF10 signaling pathway. Journal of Hazardous Materials, 2021, 401, 123341.	12.4	26
21	Stem cell toxicology: a powerful tool to assess pollution effects on human health. National Science Review, 2016, 3, 430-450.	9.5	22
22	Typical halogenated flame retardants affect human neural stem cell gene expression during proliferation and differentiation via glycogen synthase kinase 3 beta and T3 signaling. Ecotoxicology and Environmental Safety, 2019, 183, 109498.	6.0	20
23	Embryoid body-based RNA-seq analyses reveal a potential TBBPA multifaceted developmental toxicity. Journal of Hazardous Materials, 2019, 376, 223-232.	12.4	19
24	Silver nanoparticles (AgNPs) and AgNO3 perturb the specification of human hepatocyte-like cells and cardiomyocytes. Science of the Total Environment, 2020, 725, 138433.	8.0	19
25	Non-cytotoxic nanomolar concentrations of bisphenol A induce human mesenchymal stem cell adipogenesis and osteogenesis. Ecotoxicology and Environmental Safety, 2018, 164, 448-454.	6.0	18
26	Establishment of a human embryonic stem cell-based liver differentiation model for hepatotoxicity evaluations. Ecotoxicology and Environmental Safety, 2019, 174, 353-362.	6.0	17
27	Evaluation of the effects of low nanomolar bisphenol A-like compounds' levels on early human embryonic development and lipid metabolism with human embryonic stem cell in vitro differentiation models. Journal of Hazardous Materials, 2021, 407, 124387.	12.4	17
28	Assessment of the developmental neurotoxicity of silver nanoparticles and silver ions with mouse embryonic stem cells in vitro. Journal of Interdisciplinary Nanomedicine, 2018, 3, 133-145.	3.6	16
29	Effects of per- and poly-fluorinated alkyl substances on pancreatic and endocrine differentiation of human pluripotent stem cells. Chemosphere, 2020, 254, 126709.	8.2	15
30	Development of Human Lung Induction Models for Air Pollutants' Toxicity Assessment. Environmental Science & Technology, 2021, 55, 2440-2451.	10.0	15
31	NAC1 Regulates Somatic Cell Reprogramming by Controlling Zeb1 and E-cadherin Expression. Stem Cell Reports, 2017, 9, 913-926.	4.8	14
32	Human Pluripotent Stem Cells as Tools for Predicting Developmental Neural Toxicity of Chemicals: Strategies, Applications, and Challenges. Stem Cells and Development, 2019, 28, 755-768.	2.1	12
33	Non-cytotoxic silver nanoparticle levels perturb human embryonic stem cell-dependent specification of the cranial placode in part via FGF signaling. Journal of Hazardous Materials, 2020, 393, 122440.	12.4	12
34	Environmentally relevant exposure to TBBPA and its analogues may not drastically affect human early cardiac development. Environmental Pollution, 2022, 306, 119467.	7.5	8
35	Assessment of the carcinogenic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin using mouse embryonic stem cells to form teratoma in vivo. Toxicology Letters, 2019, 312, 139-147.	0.8	7
36	Adverse Events During Pregnancy Associated With Entecavir and Adefovir: New Insights From a Real-World Analysis of Cases Reported to FDA Adverse Event Reporting System. Frontiers in Pharmacology, 2021, 12, 772768.	3.5	7

#	Article	IF	CITATIONS
37	In vivo and in vitro transcriptomics meta-analyses reveal that BPA may affect TGF-beta signaling regardless of the toxicology system employed. Environmental Pollution, 2021, 285, 117472.	7.5	4