List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8002135/publications.pdf Version: 2024-02-01

FRANCO ZADRA

#	Article	IF	CITATIONS
1	Range-Finding SPAD Array With Smart Laser-Spot Tracking and TDC Sharing for Background Suppression. IEEE Open Journal of the Solid-State Circuits Society, 2022, 2, 26-37.	2.7	8
2	Multi-Channel SPAD Chip for Silicon Photonics With Multi-Photon Colncidence Detection. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-7.	2.9	6
3	Multi-Channel FPGA Time-to-Digital Converter With 10 ps Bin and 40 ps FWHM. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	4.7	13
4	Single-Shot Pulsed-LiDAR SPAD Sensor with on-chip Peak Detection for Background Rejection. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-10.	2.9	5
5	Monitoring the motor cortex hemodynamic response function in freely moving walking subjects: a time-domain fNIRS pilot study. Neurophotonics, 2021, 8, 015006.	3.3	8
6	Spot Tracking and TDC Sharing in SPAD Arrays for TOF LiDAR. Sensors, 2021, 21, 2936.	3.8	9
7	Single Photon Avalanche Diode Arrays for Quantum Imaging and Microscopy. Advanced Quantum Technologies, 2021, 4, 2100005.	3.9	25
8	Statistical Modelling of SPADs for Time-of-Flight LiDAR. Sensors, 2021, 21, 4481.	3.8	19
9	SPADs and SiPMs Arrays for Long-Range High-Speed Light Detection and Ranging (LiDAR). Sensors, 2021, 21, 3839.	3.8	83
10	Linear SPAD array single- and multiple-photon coincidence- based Quantum Random Number Generator. , 2021, , .		0
11	Fast-gated digital silicon photomultiplier maximizes light harvesting and depth sensitivity in time-domain diffuse optics. , 2021, , .		0
12	Large-Area, Fast-Gated Digital SiPM With Integrated TDC for Portable and Wearable Time-Domain NIRS. IEEE Journal of Solid-State Circuits, 2020, 55, 3097-3111.	5.4	21
13	High Detection Rate Fast-Gated CMOS Single-Photon Avalanche Diode Module. IEEE Photonics Journal, 2020, 12, 1-12.	2.0	6
14	Biometric Signals Estimation Using Single Photon Camera and Deep Learning. Sensors, 2020, 20, 6102.	3.8	7
15	Real-time multispectral fluorescence lifetime imaging using Single Photon Avalanche Diode arrays. Scientific Reports, 2020, 10, 8116.	3.3	24
16	Single-Photon Detectors Modeling and Selection Criteria for High-Background LiDAR. IEEE Sensors Journal, 2020, 20, 7021-7032.	4.7	19
17	High concentration factor diffractive microlenses integrated with CMOS single-photon avalanche diode detector arrays for fill-factor improvement. Applied Optics, 2020, 59, 4488.	1.8	19
18	Wearable and wireless time-domain near-infrared spectroscopy system for brain and muscle hemodynamic monitoring. Biomedical Optics Express, 2020, 11, 5934.	2.9	31

#	Article	IF	CITATIONS
19	SPAD-based asynchronous-readout array detectors for image-scanning microscopy. Optica, 2020, 7, 755.	9.3	37
20	Microelectronic 3D Imaging and Neuromorphic Recognition for Autonomous UAVs. NATO Science for Peace and Security Series B: Physics and Biophysics, 2020, , 185-194.	0.3	2
21	Multispectral Depth-Resolved Fluorescence Lifetime Spectroscopy Using SPAD Array Detectors and Fiber Probes. Sensors, 2019, 19, 2678.	3.8	6
22	Gated SPAD Arrays for Single-Photon Time-Resolved Imaging and Spectroscopy. IEEE Photonics Journal, 2019, 11, 1-10.	2.0	13
23	3D RGB Non-Line-Of-Sight single-pixel imaging. , 2019, , .		5
24	Time-gated SPAD camera with reconfigurable macropixels for LIDAR applications. , 2019, , .		2
25	Design of a 16 x 16 fast-gated SPAD imager with 16 integrated shared picosecond TDCs for non-line-of-sight imaging. , 2019, , .		2
26	A 20 A Sub-Nanosecond Integrated CMOS Laser Diode Driver for High Repetition Rate SPAD-Based Direct Time-of-Flight Measurements. , 2018, , .		3
27	0.16 µm–BCD Silicon Photomultipliers with Sharp Timing Response and Reduced Correlated Noise. Sensors, 2018, 18, 3763.	3.8	4
28	SPADs and TDCs for photon-counting, timing and gated-imaging at 30 ps resolution and 60% efficiency. , 2018, , .		2
29	Single-Photon Avalanche Diodes in a 0.16 μm BCD Technology With Sharp Timing Response and Red-Enhanced Sensitivity. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-9.	2.9	73
30	Time-gated CMOS SPAD array in 0.16 $\hat{A}\mu m$ BCD with shared timing electronics and background light rejection for LIDAR applications. , 2018, , .		1
31	0.16 µm BCD single-photon avalanche diode with 30 ps timing jitter, high detection efficiency and low noise. , 2018, , .		2
32	Quantum weak-interaction-based measurement: from sequential weak measurement to protective measurement. , 2018, , .		0
33	Time-resolved CMOS SPAD arrays: architectures, applications and perspectives. , 2017, , .		2
34	A Compact Two-Wavelength Time-Domain NIRS System Based on SiPM and Pulsed Diode Lasers. IEEE Photonics Journal, 2017, 9, 1-14.	2.0	42
35	Compact dual-wavelength system for time-resolved diffuse optical spectroscopy. , 2017, , .		3
36	Photon-efficient imaging with a single-photon camera. Nature Communications, 2016, 7, 12046.	12.8	169

#	Article	IF	CITATIONS
37	Compact, Low-Power and Fully Reconfigurable 10 ps Resolution, 160 Range, Time-Resolved Single-Photon Counting System. IEEE Sensors Journal, 2016, 16, 3827-3833.	4.7	19
38	Charge Persistence in InGaAs/InP Single-Photon Avalanche Diodes. IEEE Journal of Quantum Electronics, 2016, 52, 1-7.	1.9	11
39	Automotive Three-Dimensional Vision Through a Single-Photon Counting SPAD Camera. IEEE Transactions on Intelligent Transportation Systems, 2016, 17, 782-795.	8.0	75
40	SPAD Figures of Merit for Photon-Counting, Photon-Timing, and Imaging Applications: A Review. IEEE Sensors Journal, 2016, 16, 3-12.	4.7	161
41	Eight-Channel 21 ps Precision <inline-formula> <tex-math notation="LaTeX">\$10~mu ext{s}\$ </tex-math></inline-formula> Range Time-to-Digital Converter Module. IEEE Transactions on Instrumentation and Measurement, 2016, 65, 423-430.	4.7	7
42	Photon-efficient computational imaging with a single-photon camera. , 2016, , .		7
43	A new method utilizing novel single-photon avalanche diode arrays for multi-exposure laser speckle flowmetry. , 2016, , .		0
44	Short-gate techniques for high-speed photon counting with InGaAs/InP SPADs. , 2016, , .		0
45	Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays. Optics Express, 2015, 23, 33777.	3.4	36
46	Planar CMOS analog SiPMs: design, modeling, and characterization. Journal of Modern Optics, 2015, 62, 1693-1702.	1.3	14
47	SPICE Electrical Models and Simulations of Silicon Photomultipliers. IEEE Transactions on Nuclear Science, 2015, 62, 1950-1960.	2.0	24
48	High-Speed Quantum Random Number Generation Using CMOS Photon Counting Detectors. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 23-29.	2.9	32
49	Effects of time-gated detection in diffuse optical imaging at short source-detector separation. Journal Physics D: Applied Physics, 2015, 48, 045401.	2.8	35
50	Fully CMOS analog and digital SiPMs. Proceedings of SPIE, 2015, , .	0.8	0
51	High-Fill-Factor <inline-formula> <tex-math notation="LaTeX">\$60imes 1\$ </tex-math></inline-formula> SPAD Array With 60 Subnanosecond Integrated TDCs. IEEE Photonics Technology Letters, 2015, 27, 1261-1264.	2.5	28
52	High linearity SPAD and TDC array for TCSPC and 3D ranging applications. Proceedings of SPIE, 2015, , .	0.8	1
53	Dual channel timeâ€ŧoâ€digital converter module with 10 ps resolution and 320Âns full scale range. Electronics Letters, 2015, 51, 994-996.	1.0	4
54	High-speed multi-exposure laser speckle contrast imaging with a single-photon counting camera. Biomedical Optics Express, 2015, 6, 2865.	2.9	46

#	Article	IF	CITATIONS
55	Enhanced single-photon time-of-flight 3D ranging. Optics Express, 2015, 23, 24962.	3.4	52
56	Integrated Circuit for Subnanosecond Gating of InGaAs/InP SPAD. IEEE Journal of Quantum Electronics, 2015, 51, 1-7.	1.9	20
57	Analog SiPM in planar CMOS technology. , 2014, , .		7
58	High-throughput gated photon counter with two detection windows programmable down to 70 ps width. Review of Scientific Instruments, 2014, 85, 013107.	1.3	7
59	Low-noise CMOS SPAD arrays with in-pixel time-to-digital converters. , 2014, , .		2
60	CMOS Imager With 1024 SPADs and TDCs for Single-Photon Timing and 3-D Time-of-Flight. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 364-373.	2.9	198
61	100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 354-363.	2.9	144
62	A Single-Photon Avalanche Camera for Fluorescence Lifetime Imaging Microscopy and Correlation Spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 344-353.	2.9	45
63	CMOS SPADs with up to 500 \hat{l} /4 m diameter and 55% detection efficiency at 420 nm. Journal of Modern Optics, 2014, 61, 102-115.	1.3	77
64	Fast Sensing and Quenching of CMOS SPADs for Minimal Afterpulsing Effects. IEEE Photonics Technology Letters, 2013, 25, 776-779.	2.5	93
65	Avalanche Current Waveform Estimated From Electroluminescence in InGaAs/InP SPADs. IEEE Photonics Technology Letters, 2013, 25, 1778-1780.	2.5	10
66	MiSPIA: microelectronic single-photon 3D imaging arrays for low-light high-speed safety and security applications. , 2013, , .		10
67	Growths and diffusions for InGaAs/InP single-photon avalanche diodes. Sensors and Actuators A: Physical, 2013, 201, 207-213.	4.1	10
68	Dark Count Rate Dependence on Bias Voltage During Gate-OFF in InGaAs/InP Single-Photon Avalanche Diodes. IEEE Photonics Technology Letters, 2013, 25, 1832-1834.	2.5	5
69	A High-Linearity, 17 ps Precision Time-to-Digital Converter Based on a Single-Stage Vernier Delay Loop Fine Interpolation. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60, 557-569.	5.4	143
70	Fast Active Quenching Circuit for Reducing Avalanche Charge and Afterpulsing in InGaAs/InP Single-Photon Avalanche Diode. IEEE Journal of Quantum Electronics, 2013, 49, 563-569.	1.9	29
71	Single-photon pulsed-light indirect time-of-flight 3D ranging. Optics Express, 2013, 21, 5086.	3.4	32
72	Large-area CMOS SPADs with very low dark counting rate. Proceedings of SPIE, 2013, , .	0.8	6

#	Article	IF	CITATIONS
73	Low afterpulsing and narrow timing response InGaAs/InP Single-Photon Avalanche Diode. Proceedings of SPIE, 2013, , .	0.8	0
74	Development of new photon-counting detectors for single-molecule fluorescence microscopy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120035.	4.0	100
75	Design Criteria for InGaAs/InP Single-Photon Avalanche Diode. IEEE Photonics Journal, 2013, 5, 6800209-6800209.	2.0	47
76	Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm. Review of Scientific Instruments, 2013, 84, 123112.	1.3	22
77	MiSPiA: microelectronic single-photon 3D imaging arrays for low-light high-speed safety and security applications. , 2013, , .		7
78	In-vivo optical spectroscopy in the time-domain beyond 1100 nm. , 2013, , .		1
79	Time-resolved optical spectrometer based on a monolithic array of high-precision TDCs and SPADs. , 2013, , .		0
80	Indirect time-of-flight 3D ranging based on SPADs. Proceedings of SPIE, 2012, , .	0.8	7
81	Single-fiber diffuse optical time-of-flight spectroscopy. Optics Letters, 2012, 37, 2877.	3.3	36
82	Non-contact time-resolved diffuse reflectance imaging at null source-detector separation. Optics Express, 2012, 20, 283.	3.4	46
83	10 ps resolution, 160 ns full scale range and less than 1.5% differential non-linearity time-to-digital converter module for high performance timing measurements. Review of Scientific Instruments, 2012, 83, 074703.	1.3	15
84	32 channels SPAD array for single photon timing applications. , 2012, , .		0
85	Single-photon detectors for practical quantum cryptography. Proceedings of SPIE, 2012, , .	0.8	4
86	SPAD imagers for remote sensing at the single-photon level. , 2012, , .		9
87	2D simulation for the impact of edge effects on the performance of planar InGaAs/InP SPADs. Proceedings of SPIE, 2012, , .	0.8	5
88	Time-Resolved Diffuse Optical Spectroscopy up to 1700 nm by Means of a Time-Gated InGaAs/InP Single-Photon Avalanche Diode. Applied Spectroscopy, 2012, 66, 944-950.	2.2	48
89	Fast-gated single-photon detection module with 200 ps transitions running up to 50 MHz with 30 ps resolution. , 2012, , .		1
90	InGaAs/InP single-photon counting module running up to 133 MHz. Proceedings of SPIE, 2012, , .	0.8	1

#	Article	IF	CITATIONS
91	SPAD Smart Pixel for Time-of-Flight and Time-Correlated Single-Photon Counting Measurements. IEEE Photonics Journal, 2012, 4, 795-804.	2.0	77
92	Correction to "SPAD Smart Pixel for Time-of-Flight and Time-Correlated Single-Photon Counting Measurements―[Jun 12 795-804]. IEEE Photonics Journal, 2012, 4, 1027-1027.	2.0	0
93	InGaAs/InP Single-Photon Avalanche Diode With Reduced Afterpulsing and Sharp Timing Response With 30 ps Tail. IEEE Journal of Quantum Electronics, 2012, 48, 1227-1232.	1.9	42
94	Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon silicon single-photon avalanche diode. Applied Physics Letters, 2012, 100, 241111.	3.3	27
95	InGaAs/InP SPAD with improved structure for sharp timing response. , 2012, , .		0
96	Low-noise and large-area CMOS SPADs with timing response free from slow tails. , 2012, , .		39
97	InGaAs/InP Single-Photon Avalanche Diode with narrow photon timing response. , 2012, , .		0
98	3D sensor for indirect ranging with pulsed laser source. Proceedings of SPIE, 2012, , .	0.8	1
99	Low-power 20-meter 3D ranging SPAD camera based on continuous-wave indirect time-of-flight. , 2012, ,		3
100	Integrated simulator for single photon avalanche diodes. , 2011, , .		5
101	Photonics for Life. IEEE Pulse, 2011, 2, 16-23.	0.3	3
102	Advances in InGaAsP-based avalanche diode single photon detectors. Journal of Modern Optics, 2011, 58, 174-200.	1.3	170
103	Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements. Optics Express, 2011, 19, 10735.	3.4	89
104	Advanced single photon counting instrumentation for SPADs. , 2011, , .		2
105	3D ranging with a single-photon imaging array. , 2011, , .		2
106	Compact detection module based on InGaAs/InP SPADs for near-infrared single-photon counting up to 1.7 μm. , 2011, , .		0
107	Towards arrays of smart-pixels for time-correlated single photon counting and time of flight application. , 2011, , .		0
108	Smart-pixel for 3D ranging imagers based on single-photon avalanche diode and time-to-digital converter. Proceedings of SPIE, 2011, , .	0.8	7

#	Article	IF	CITATIONS
109	Linear arrays of single-photon detectors for photon counting and timing. , 2011, , .		1
110	Monolithic single-photon detectors and time-to-digital converters for picoseconds time-of-flight ranging. Proceedings of SPIE, 2011, , .	0.8	1
111	Time-domain diffuse optical spectroscopy up to 1700 nm using an InGaAs/InP single-photon avalanche diode. Proceedings of SPIE, 2011, , .	0.8	1
112	Time-resolved diffuse optical spectroscopy up to 1700 nm using a time-gated InGaAs/InP single-photon avalanche diode. Proceedings of SPIE, 2011, , .	0.8	2
113	A 32×32 photon counting camera. Optik & Photonik, 2011, 6, 43-46.	0.2	0
114	Experimental characterization of afterpulsing and timing jitter of InGaAs/InP SPAD. Proceedings of SPIE, 2011, , .	0.8	4
115	Modeling of afterpulsing in single-photon avalanche diodes. Proceedings of SPIE, 2011, , .	0.8	10
116	1024 pixels single photon imaging array for 3D ranging. Proceedings of SPIE, 2011, , .	0.8	0
117	Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD. Proceedings of SPIE, 2011, 7905, .	0.8	27
118	New photon-counting detectors for single-molecule fluorescence spectroscopy and imaging. , 2011, 8033, 803316.		14
119	Imaging Beyond the Rayleigh Bound. , 2011, , .		0
120	Fast-gated single-photon detectors boost dynamic range in NIR spectroscopy. Proceedings of SPIE, 2010, , .	0.8	0
121	Functional diffuse reflectance spectroscopy at small source-detector distances based on fast-gated single-photon avalanche diodes. , 2010, , .		1
122	Two-Dimensional SPAD Imaging Camera for Photon Counting. IEEE Photonics Journal, 2010, 2, 759-774.	2.0	96
123	Fast-Gated Single-Photon Avalanche Diode for Wide Dynamic Range Near Infrared Spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1023-1030.	2.9	81
124	Smart-pixel with SPAD detector and time-to-digital converter for time-correlated single photon counting. , 2010, , .		9
125	Single-photon 3D ranging based on SPAD imagers. , 2010, , .		2
126	High-throughput single-molecule fluorescence spectroscopy using parallel detection. , 2010, 7608, .		12

126 High-throughput single-molecule fluorescence spectroscopy using parallel detection. , 2010, 7608, .

#	Article	IF	CITATIONS
127	Single-photon avalanche diode arrays and CMOS microelectronics for counting, timing, and imaging quantum events. Proceedings of SPIE, 2010, , .	0.8	8
128	Single-photon camera for high-sensitivity high-speed applications. Proceedings of SPIE, 2010, , .	0.8	8
129	High Throughput Single-Molecule Spectroscopy with Highly Parallel Excitation and Detection. Biophysical Journal, 2010, 98, 623a.	0.5	0
130	InGaAs/InP SPADs for near-infrared applications: device operating conditions and dedicated electronics. Proceedings of SPIE, 2010, , .	0.8	4
131	Sub-Rayleigh Imaging via <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>N</mml:mi></mml:math> -Photon Detection. Physical Review Letters, 2010, 105, 163602.	7.8	46
132	SPAD arrays for parallel photon counting and timing. , 2010, , .		7
133	Characterization of InGaAs/InP single-photon avalanche diodes. , 2010, , .		0
134	Single photon counting detectors in action: Retrospect and prospect. , 2010, , .		3
135	Ultra-Fast Time-Gated SPAD for Multi-Wavelength Wide Dynamic Range Spectroscopy. , 2010, , .		0
136	The Spread Matrix: a method to predict the effect of a non time-invariant measurement system. , 2010, , .		0
137	Sub-Rayleigh Imaging via N-Photon Detection. , 2010, , .		2
138	One-chip quantum random number generator. Proceedings of SPIE, 2009, , .	0.8	1
139	InGaAs/InP single-photon avalanche diodes show low dark counts and require moderate cooling. , 2009, , .		15
140	Monolithic array of 32 SPAD pixels for single-photon imaging at high frame rates. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 610, 24-27.	1.6	7
141	SPICE modeling of single photon avalanche diodes. Sensors and Actuators A: Physical, 2009, 153, 197-204.	4.1	74
142	Single-photon avalanche diodes for the near-infrared range: detector and circuit issues. Journal of Modern Optics, 2009, 56, 299-308.	1.3	64
143	High-performance silicon single-photon avalanche diode array. Proceedings of SPIE, 2009, , .	0.8	6
144	Brain functional imaging at small source-detector distances based on fast-gated single-photon avalanche diodes. Proceedings of SPIE, 2009, , .	0.8	1

#	Article	IF	CITATIONS
145	Fast-gated single-photon avalanche diode for extremely wide dynamic-range applications. Proceedings of SPIE, 2009, , .	0.8	11
146	SPAD detection head with 32 fully-parallel channels for time-tagging single-photons at 31¼s. , 2009, , .		0
147	Fast single-photon imager acquires 1024 pixels at 100 kframe/s. , 2009, , .		15
148	All-Silicon 1.55-μm High-Resolution Photon Counting and Timing. IEEE Photonics Technology Letters, 2008, 20, 1956-1958.	2.5	5
149	Modeling and Probing Hot-Carrier Luminescence From MOSFETs. IEEE Electron Device Letters, 2008, 29, 350-352.	3.9	4
150	Variable-load quenching circuit for single-photon avalanche diodes. Optics Express, 2008, 16, 2232.	3.4	78
151	A Packaging Solution for Optically Testing Wire-Bonded Chips. IEEE Transactions on Advanced Packaging, 2008, 31, 490-495.	1.6	1
152	100 kframe/s 8 bit monolithic single-photon imagers. , 2008, , .		5
153	Time-Resolved Diffuse Reflectance Using Small Source-Detector Separation and Fast Single-Photon Gating. Physical Review Letters, 2008, 100, 138101.	7.8	119
154	High-rate photon counting and picosecond timing with silicon-SPAD based compact detector modules. Journal of Modern Optics, 2007, 54, 225-237.	1.3	34
155	60-Channel 10 \$mu\$s Time-Resolution Counter Array for Long Term Continuous Event Counting. IEEE Transactions on Nuclear Science, 2007, 54, 549-554.	2.0	1
156	InGaAs SPAD and electronics for low time jitter and low noise. , 2007, , .		18
157	Germanium and InGaAs/InP SPADs for single-photon detection in the near-infrared. Proceedings of SPIE, 2007, , .	0.8	9
158	Silicon single photon avalanche diodes: situation and prospect. , 2007, , .		1
159	Time-gated single-photon avalanche diode for time-resolved diffuse reflectance at small source-detector separation. Proceedings of SPIE, 2007, , .	0.8	0
160	Monolithic quad-cells for single-photon timing and tracking. , 2007, , .		0
161	Time-resolved diffuse reflectance at small source-detector separation using a time-gated single-photon avalanche diode. , 2007, , .		0
162	Fully-integrated CMOS single photon counter. Optics Express, 2007, 15, 2873.	3.4	42

#	Article	IF	CITATIONS
163	Single photon avalanche diodes (SPADs) for 1.5 μm photon counting applications. Journal of Modern Optics, 2007, 54, 283-304.	1.3	156
164	Photon counting arrays for astrophysics. Journal of Modern Optics, 2007, 54, 163-189.	1.3	16
165	Single-Photon Avalanche Diode Model for Circuit Simulations. IEEE Photonics Technology Letters, 2007, 19, 1922-1924.	2.5	67
166	Progress in Silicon Single-Photon Avalanche Diodes. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 852-862.	2.9	237
167	Principles and features of single-photon avalanche diode arrays. Sensors and Actuators A: Physical, 2007, 140, 103-112.	4.1	250
168	Electronics for single photon avalanche diode arrays. Sensors and Actuators A: Physical, 2007, 140, 113-122.	4.1	69
169	A view on progress of silicon single-photon avalanche diodes and quenching circuits. , 2006, 6372, 123.		7
170	Hot-Carrier Photoemission in Scaled CMOS Technologies: A Challenge for Emission Based Testing and Diagnostics. , 2006, , .		19
171	InGaAs/InP Single Photon Avalanche Diode Design and Characterization. Solid-State Device Research Conference, 2008 ESSDERC 2008 38th European, 2006, , .	0.0	5
172	Gated operation of InGaAs SPADs with active quenching and fast timing circuits. , 2006, 6372, 191.		5
173	Spada: An Array of Spad Detectors For Astrophysical Applications. Experimental Astronomy, 2006, 19, 163-168.	3.7	2
174	Single-Photon Avalanche Diode Arrays for Fast Transients and Adaptive Optics. IEEE Transactions on Instrumentation and Measurement, 2006, 55, 365-374.	4.7	18
175	SPADA: An Array of SPAD Detectors for Astrophysical Applications. , 2006, , 455-460.		0
176	Innovative packaging technique for backside optical testing of wire-bonded chips. Microelectronics Reliability, 2005, 45, 1493-1498.	1.7	1
177	Complete single-photon counting and timing module in a microchip. Optics Letters, 2005, 30, 1327.	3.3	22
178	Single-photon imaging at 20,000  framesâ^•s. Optics Letters, 2005, 30, 3024.	3.3	10
179	Photon-counting chip for avalanche detectors. IEEE Photonics Technology Letters, 2005, 17, 184-186.	2.5	15
180	SPADA: single-photon avalanche diode arrays. IEEE Photonics Technology Letters, 2005, 17, 657-659.	2.5	29

#	Article	IF	CITATIONS
181	CMOS Circuit Testing via Time-Resolved Luminescence Measurements and Simulations. IEEE Transactions on Instrumentation and Measurement, 2004, 53, 163-169.	4.7	53
182	Current crowding in faulty MOSFET: optical and electrical investigation. Microelectronics Reliability, 2004, 44, 1577-1581.	1.7	0
183	Implementation of TRE systems into Emission Microscopes. Microelectronics Reliability, 2004, 44, 1529-1534.	1.7	5
184	Evolution and prospects for single-photon avalanche diodes and quenching circuits. Journal of Modern Optics, 2004, 51, 1267-1288.	1.3	257
185	MINIATURE MODULES FOR SINGLE-PHOTON DETECTION. , 2004, , .		0
186	Cone-effect-free adaptive optics laser guide star development for the ELTs. , 2004, , .		4
187	Silicon planar technology for single-photon optical detectors. , 2004, , .		9
188	Pushing technologies: single-photon avalanche diode arrays. , 2004, , .		13
189	LUMINESCENCE MEASUREMENTS FOR THE INVESTIGATION OF VLSI CIRCUITS DEFECTS. , 2004, , .		2
190	COMPACT ELECTROPHORESIS SYSTEM FOR GENETIC DIAGNOSTICS WITH ULTRASENSITIVE MICROSENSORS. , 2004, , .		0
191	Silicon planar technology for single-photon optical detectors. IEEE Transactions on Electron Devices, 2003, 50, 918-925.	3.0	82
192	Correction to "Silicon planar technology for single-photon optical detectors". IEEE Transactions on Electron Devices, 2003, 50, 1819-1819.	3.0	0
193	Backside Flip-Chip testing by means of high-bandwidth luminescence detection. Microelectronics Reliability, 2003, 43, 1669-1674.	1.7	3
194	Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors. IEEE Journal of Solid-State Circuits, 2003, 38, 1298-1301.	5.4	103
195	High-rate quantum key distribution at short wavelength: Performance analysis and evaluation of silicon single photon avalanche diodes. Journal of Modern Optics, 2003, 50, 2251-2269.	1.3	20
196	MICROELECTRONIC ULTRASENSITIVE DETECTORS FOR CHIP ELECTROPHORESIS MICROSYSTEMS. , 2002, , .		1
197	Monolithic dual-detector for photon-correlation spectroscopy with wide dynamic range and optical 70-ps resolution. IEEE Journal of Quantum Electronics, 2001, 37, 1588-1593.	1.9	7
198	Tools for contactless testing and simulation of CMOS circuits. Microelectronics Reliability, 2001, 41, 1801-1808.	1.7	4

#	Article	IF	CITATIONS
199	Silicon p–n junctions biased above breakdown used as monitors of carrier lifetime. Materials Science in Semiconductor Processing, 2001, 4, 159-161.	4.0	1
200	High-speed CMOS circuit testing by 50 ps time-resolved luminescence measurements. IEEE Transactions on Electron Devices, 2001, 48, 2830-2835.	3.0	42
201	A probe detector for defectivity assessment in p-n junctions. IEEE Transactions on Electron Devices, 2000, 47, 609-616.	3.0	10
202	High-sensitivity photodetectors with on-chip pinhole for laser scanning microscopy. IEEE Transactions on Electron Devices, 2000, 47, 1472-1476.	3.0	2
203	An integrated active-quenching circuit for single-photon avalanche diodes. IEEE Transactions on Instrumentation and Measurement, 2000, 49, 1167-1175.	4.7	57
204	Impact of local-negative-feedback on the MRS avalanche photodetector operation. IEEE Transactions on Electron Devices, 1998, 45, 91-97.	3.0	1
205	Spectrum folding and phase noise in LC tuned oscillators. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 1998, 45, 781-790.	2.2	130
206	<title>Single-photon avalanche detectors for fluorescence imaging applications</title> . , 1997, , .		1
207	<title>Single-photon avalanche detectors for low-light-level imaging</title> . , 1997, 3114, 333.		3
208	True constant fraction trigger circuit for picosecond photon-timing with ultrafast microchannel plate photomultipliers. Review of Scientific Instruments, 1997, 68, 2228-2237.	1.3	10
209	Characterization and modeling of metal-resistance-semiconductor photodetectors. IEEE Transactions on Nuclear Science, 1997, 44, 957-960.	2.0	3
210	MRS detectors with high gain for registration of weak visible and UV light fluxes. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 387, 225-230.	1.6	18
211	Avalanche photodiodes and quenching circuits for single-photon detection. Applied Optics, 1996, 35, 1956.	2.1	850
212	Single-photon detection beyond 1 μm: performance of commercially available InGaAs/InP detectors. Applied Optics, 1996, 35, 2986.	2.1	141
213	Counting, timing, and tracking with a single-photon germanium detector. Optics Letters, 1996, 21, 59.	3.3	7
214	A VLSI-compatible high-speed silicon photodetector for optical data link applications. IEEE Transactions on Electron Devices, 1996, 43, 1054-1060.	3.0	84
215	Solidâ€state singleâ€photon detectors. Optical Engineering, 1996, 35, 938.	1.0	76
216	Compact active quenching circuit for fast photon counting with avalanche photodiodes. Review of Scientific Instruments, 1996, 67, 3440-3448.	1.3	76

#	Article	IF	CITATIONS
217	<title>Germanium quad-cell for single-photon detection in the near infrared</title> . , 1995, , .		Ο
218	<title>Avalanche photodiodes for near-infrared photon counting</title> . , 1995, 2388, 56.		6
219	Nanosecond single-photon timing with InGaAs/InP photodiodes. Optics Letters, 1994, 19, 846.	3.3	22
220	Recent advances in the detection of optical photons with silicon photodiodes. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 326, 290-294.	1.6	33
221	On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices. IEEE Transactions on Electron Devices, 1993, 40, 577-582.	3.0	259
222	Ultrafast single photon avalanche diodes without slow tails in the pulse response. IEEE Transactions on Electron Devices, 1993, 40, 2145.	3.0	5
223	Subnanosecond single-photon timing with commercially available germanium photodiodes. Optics Letters, 1993, 18, 75.	3.3	18
224	Single-photon avalanche diode with ultrafast pulse response free from slow tails. IEEE Electron Device Letters, 1993, 14, 360-362.	3.9	35
225	Photonâ€assisted avalanche spreading in reachâ€ŧhrough photodiodes. Applied Physics Letters, 1993, 62, 606-608.	3.3	50
226	Constantâ€fraction circuits for picosecond photon timing with microchannel plate photomultipliers. Review of Scientific Instruments, 1993, 64, 118-124.	1.3	12
227	Effects of trap levels in single-photon optical time-domain reflectometry: evaluation and correction. Journal of Lightwave Technology, 1992, 10, 1398-1402.	4.6	16
228	First demonstration of sub-nanosecond photon timing with a Germanium photodiode. Microelectronic Engineering, 1992, 19, 61-64.	2.4	1
229	Optimum amplification of microchannelâ€plate photomultiplier pulses for picosecond photon timing. Review of Scientific Instruments, 1991, 62, 2596-2601.	1.3	17
230	Monolithic time-to-digital converter with 20ps resolution. , 0, , .		19
231	A process and deep level evaluation tool: afterpulsing in avalanche junctions. , 0, , .		37
232	Hot-carrier luminescence: comparison of different CMOS technologies. , 0, , .		5
233	Monolithic CMOS detector module for photon counting and picosecond timing. , 0, , .		25