Chao Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8001609/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeted DNA demethylation produces heritable epialleles in rice. Science China Life Sciences, 2022, 65, 753-756.	4.9	9
2	CERK1, more than a coâ€receptor in plant–microbe interactions. New Phytologist, 2022, 234, 1606-1613.	7.3	19
3	Control of <scp><i>OsARF3a</i></scp> by <scp>OsKANADI1</scp> contributes to lemma development in rice. Plant Journal, 2022, 110, 1717-1730.	5.7	5
4	Protein arginine methyltransferase 3 fine-tunes the assembly/disassembly of pre-ribosomes to repress nucleolar stress by interacting with RPS2B in arabidopsis. Molecular Plant, 2021, 14, 223-236.	8.3	11
5	Poaceae-specific cell wall-derived oligosaccharides activate plant immunity via OsCERK1 during Magnaporthe oryzae infection in rice. Nature Communications, 2021, 12, 2178.	12.8	67
6	Small RNA flow from tapetum cells to germ cells in plants. Science China Life Sciences, 2021, 64, 1977-1979.	4.9	1
7	A bHLH transcription activator regulates defense signaling by nucleoâ€eytosolic trafficking in rice. Journal of Integrative Plant Biology, 2020, 62, 1552-1573.	8.5	37
8	Genetic Dissection of Germinability under Low Temperature by Building a Resequencing Linkage Map in japonica Rice. International Journal of Molecular Sciences, 2020, 21, 1284.	4.1	20
9	Histidine kinase MHZ1/OsHK1 interacts with ethylene receptors to regulate root growth in rice. Nature Communications, 2020, 11, 518.	12.8	37
10	Fine-Tuning of MiR528 Accumulation Modulates Flowering Time in Rice. Molecular Plant, 2019, 12, 1103-1113.	8.3	67
11	Binding of the <i>Magnaporthe oryzae</i> Chitinase MoChia1 by a Rice Tetratricopeptide Repeat Protein Allows Free Chitin to Trigger Immune Responses. Plant Cell, 2019, 31, 172-188.	6.6	84
12	Ribosomal RNA Biogenesis and Its Response to Chilling Stress in <i>Oryza sativa</i> . Plant Physiology, 2018, 177, 381-397.	4.8	46
13	Ethylene-Inhibited Jasmonic Acid Biosynthesis Promotes Mesocotyl/Coleoptile Elongation of Etiolated Rice Seedlings. Plant Cell, 2017, 29, 1053-1072.	6.6	109
14	Activation of ethylene signaling pathways enhances disease resistance by regulating <scp>ROS</scp> and phytoalexin production in rice. Plant Journal, 2017, 89, 338-353.	5.7	152
15	Rice Plasma Membrane Proteomics Reveals <i>Magnaporthe oryzae</i> Promotes Susceptibility by Sequential Activation of Host Hormone Signaling Pathways. Molecular Plant-Microbe Interactions, 2016, 29, 902-913.	2.6	29
16	<i>MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1</i> and <i>ETHYLENE INSENSITIVE3-LIKE2</i> Regulate Ethylene Response of Roots and Coleoptiles and Negatively Affect Salt Tolerance in Rice. Plant Physiology, 2015, 169, 148-165.	4.8	163
17	Ethylene Signaling in Rice and Arabidopsis: Conserved and Diverged Aspects. Molecular Plant, 2015, 8, 495-505.	8.3	171
18	Ethylene Responses in Rice Roots and Coleoptiles Are Differentially Regulated by a Carotenoid Isomerase-Mediated Abscisic Acid Pathway. Plant Cell, 2015, 27, 1061-1081.	6.6	107

#	Article	IF	CITATIONS
19	Identification of Rice Ethylene-Response Mutants and Characterization of MHZ7/OsEIN2 in Distinct Ethylene Response and Yield Trait Regulation. Molecular Plant, 2013, 6, 1830-1848.	8.3	117