
Magdi Abdelhamid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8001608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of environment and cultivar impact on lentil protein, starch, mineral nutrients, and yield. Crop Science, 2022, 62, 893-905.	0.8	8
2	Phytohormones as Growth Regulators During Abiotic Stress Tolerance in Plants. Frontiers in Agronomy, 2022, 4, .	1.5	63
3	Prospective Role of Plant Growth Regulators for Tolerance to Abiotic Stresses. , 2021, , 1-38.		11
4	Role of Microorganisms in Managing Soil Fertility and Plant Nutrition in Sustainable Agriculture. , 2021, , 93-114.		0
5	Response of Spring Wheat (Triticum aestivum) to Deficit Irrigation Management under the Semi-Arid Environment of Egypt: Field and Modeling Study. Agriculture (Switzerland), 2021, 11, 90.	1.4	4
6	Sequenced application of glutathione as an antioxidant with an organic biostimulant improves physiological and metabolic adaptation to salinity in wheat. Plant Physiology and Biochemistry, 2021, 158, 43-52.	2.8	51
7	Progress in understanding salt stress response in plants using biotechnological tools. Journal of Biotechnology, 2021, 329, 180-191.	1.9	82
8	Exogenous application of melatonin alleviates salt stress-induced decline in growth and photosynthesis in Glycine max (L.) seedlings by improving mineral uptake, antioxidant and glyoxalase system. Plant, Soil and Environment, 2021, 67, 208-220.	1.0	38
9	Coupling effects of phosphorus fertilization source and rate on growth and ion accumulation of common bean under salinity stress. PeerJ, 2021, 9, e11463.	0.9	24
10	Biodiversity, Ecology, and Secondary Metabolites Production of Endophytic Fungi Associated with Amaryllidaceae Crops. Agriculture (Switzerland), 2020, 10, 533.	1.4	10
11	Role of Melatonin in Plant Tolerance to Soil Stressors: Salinity, pH and Heavy Metals. Molecules, 2020, 25, 5359.	1.7	79
12	The Nitrogen-Fixing Bacteria—Effective Enhancers of Growth and Chemical Composition of Egyptian Henbane under Varied Mineral N Nutrition. Agronomy, 2020, 10, 921.	1.3	4
13	Linking Endophytic Fungi to Medicinal Plants Therapeutic Activity. A Case Study on Asteraceae. Agriculture (Switzerland), 2020, 10, 286.	1.4	45
14	Management of the poultry red mite, Dermanyssus gallinae, using silica-based acaricides. Experimental and Applied Acarology, 2020, 82, 243-254.	0.7	5
15	Ascorbic Acid Induces the Increase of Secondary Metabolites, Antioxidant Activity, Growth, and Productivity of the Common Bean under Water Stress Conditions. Plants, 2020, 9, 627.	1.6	37
16	Physiological and Anatomical Mechanisms in Wheat to Cope with Salt Stress Induced by Seawater. Plants, 2020, 9, 237.	1.6	47
17	New Approaches for Improving Salt Stress Tolerance in Rice. , 2020, , 247-268.		9
18	Sustainable crop production to ensuring food security under climate change: A Mediterranean perspective. Australian Journal of Crop Science, 2020, , 439-446.	0.1	12

Magdi Abdelhamid

#	Article	IF	CITATIONS
19	Biochemical Indicators and Biofertilizer Application for Diagnosis and Allevation Micronutrient Deficiency in Plant. , 2020, , 425-447.		0
20	Maize (<i>Zea mays</i> L.) grains extract mitigates the deleterious effects of salt stress on common bean (<i>Phaseolus vulgaris</i> L.) growth and physiology. Journal of Horticultural Science and Biotechnology, 2019, 94, 777-789.	0.9	50
21	The Mechanisms Involved in Improving the Tolerance of Plants to Salt Stress Using Arbuscular Mycorrhizal Fungi. Soil Biology, 2019, , 303-327.	0.6	5
22	Exogenous application of Î ² -sitosterol mediated growth and yield improvement in water-stressed wheat (Triticum aestivum) involves up-regulated antioxidant system. Journal of Plant Research, 2019, 132, 881-901.	1.2	46
23	The Potential Role of Cobalt and/or Organic Fertilizers in Improving the Growth, Yield, and Nutritional Composition of Moringa oleifera. Agronomy, 2019, 9, 862.	1.3	18
24	Mechanisms of Seed Priming Involved in Salt Stress Amelioration. , 2019, , 219-251.		10
25	EFFECTS OF DROUGHT STRESS ON THE QUALITY OF MAJOR OILSEED CROPS: IMPLICATIONS AND POSSIBLE MITIGATION STRATEGIES – A REVIEW. Applied Ecology and Environmental Research, 2019, 17, 4019-4043.	0.2	65
26	Do NH ₄ :NO ₃ ratio and harvest time affect celery (<i>Apium graveolens</i>) productivity and product quality?. Folia Horticulturae, 2019, 31, 343-353.	0.6	5
27	Protective role of α-tocopherol on two Vicia faba cultivars against seawater-induced lipid peroxidation by enhancing capacity of anti-oxidative system. Journal of the Saudi Society of Agricultural Sciences, 2016, 15, 145-154.	1.0	37
28	Improved Salinity Tolerance by Phosphorus Fertilizer in Two <i>Phaseolus vulgaris</i> Recombinant Inbred Lines Contrasting in Their Pâ€Efficiency. Journal of Agronomy and Crop Science, 2016, 202, 497-507.	1.7	81
29	Physiological response of lupine and associated weeds grown at salt-affected soil to α‑tocopherol and hoeing treatments. Gesunde Pflanzen, 2016, 68, 117-127.	1.7	10
30	The effect of compost on growth and yield of Phaseolus vulgaris plants grown under saline soil. International Journal of Recycling of Organic Waste in Agriculture, 2016, 5, 311-321.	2.0	86
31	Physiological and Biochemical Responses of Vicia Faba Plants to Foliar Application of Zinc and Iron. Gesunde Pflanzen, 2016, 68, 201-212.	1.7	46
32	CropSyst model for wheat under deficit irrigation using sprinkler and drip irrigation in sandy soil. Journal of Water and Land Development, 2015, 26, 57-64.	0.9	15
33	Response Of Wheat (Triticum aestivum L.) Crop And Broad-Leaved Weeds To Different Water Requirements And Weed Management In Sandy Soils. Agriculture, 2015, 61, 22-32.	0.2	11
34	CropSyst model for wheat irrigation water management with fresh and poor quality water. Journal of Water and Land Development, 2015, 27, 41-50.	0.9	8
35	Genotypic Variation in Nodule Iron Content of Common Bean (Phaseolus VulgarisL.) in Response to Phosphorus Deficiency. Journal of Plant Nutrition, 2015, 38, 417-430.	0.9	2
36	Einfluss der Anwendung einer AminosÃ ¤ renmischung auf einige biochemische Aspekte, antioxidative Enzyme und endogene Polyamine der Pflanze Vicia faba bei Stress durch Salz aus Meerwasser. Gesunde Pflanzen, 2015, 67, 119-129.	1.7	44

#	Article	IF	CITATIONS
37	Response Of Wheat (Triticum aestivum L.) And Associated Grassy Weeds Grown In Salt-Affected Soil To Effects Of Graminicides And Indole Acetic Acid. Agriculture, 2015, 61, 1-11.	0.2	4
38	Effective microorganisms improve growth performance, alter nutrients acquisition and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress. Plant Growth Regulation, 2015, 75, 281-295.	1.8	74
39	Interactive Effects of Calcium and Boron Application on Nutrient Content, Growth and Yield of Faba Bean Irrigated by Saline Water. International Journal of Plant & Soil Science, 2015, 4, 288-296.	0.2	3
40	EFFECT OF FOLIAR APPLICATION OF AMINOACIDS ON PLANT YIELD AND PHYSIOLOGICAL PARAMETERS IN BEAN PLANTS IRRIGATED WITH SEAWATER. Acta Biologica Colombiana, 2014, 20, 140-152.	0.1	52
41	The changes induced in the physiological, biochemical and anatomical characteristics of Vicia faba by the exogenous application of proline under seawater stress. South African Journal of Botany, 2014, 93, 54-63.	1.2	101
42	Foliar-applied α-tocopherol enhances salt-tolerance in Vicia faba L. plants grown under saline conditions. South African Journal of Botany, 2014, 95, 24-31.	1.2	81
43	Potassium fertiliser enhances the salt-tolerance of common bean (<i>Phaseolus vulgaris</i> L.). Journal of Horticultural Science and Biotechnology, 2014, 89, 185-192.	0.9	31
44	Improving Growth and Productivity of Faba Bean Plants by Foliar Application of Thiourea and Aspartic Acid. International Journal of Plant & Soil Science, 2014, 3, 724-736.	0.2	7
45	Exogenous application of proline alleviates salt-induced oxidative stress in <i>Phaseolus vulgaris</i> L. plants. Journal of Horticultural Science and Biotechnology, 2013, 88, 439-446.	0.9	72
46	Ameliorate salinity effect through sulphur application and its effect on some soil and plant characters under different water quantities. Agricultural Sciences, 2013, 04, 39-47.	0.2	11
47	Relationship between phosphorus status and nitrogen fixation by common beans (Phaseolus vulgaris) Tj ETQq1	1 0,78431 1.8	4 rgBT /Overi
48	Development of New Technological Approach to Mitigate Salinization. , 2011, , 69-80.		2
49	RESPONSE OF NON-NODULATING, NODULATING, AND SUPER-NODULATING SOYBEAN GENOTYPES TO POTASSIUM FERTILIZER UNDER WATER STRESS. Journal of Plant Nutrition, 2011, 34, 1675-1689.	0.9	12
50	Drying the surface soil reduces the nitrogen content of faba bean (Vicia faba L.) through a reduction in nitrogen fixation. Plant and Soil, 2011, 339, 351-362.	1.8	14
51	Growth, Root Characteristics, and Leaf Nutrients Accumulation of Four Faba Bean (<i>Vicia faba</i> L.) Cultivars Differing in Their Broomrape Tolerance and the Soil Properties in Relation to Salinity. Communications in Soil Science and Plant Analysis, 2010, 41, 2713-2728.	0.6	47
52	Efficient Root System in Legume Crops to Stress Environments. , 2010, , 229-242.		5
53	Integrated Effects of Bio and Mineral Fertilizers and Humic Substances on Growth, Yield and Nutrient Contents of Fertigated Cowpea (Vigna unguiculata L.) Grown on Sandy Soils. Journal of Agronomy, 2010, 10, 34-39.	0.4	21
54	Physiological response of vicia faba to prohexadione-calcium under saline conditions. Planta Daninha, 2009, 27, 769-779.	0.5	26

Magdi Abdelhamid

#	Article	IF	CITATIONS
55	Growth, nodulation, and yield of soybean and associated weeds as affected by weed management. Planta Daninha, 2008, 26, 855-863.	0.5	16
56	Weed control under integrated nutrient management systems in faba bean (Vicia faba) production in Egypt. Planta Daninha, 2008, 26, 585-594.	0.5	9
57	Comparison of Weed Suppression and Mandarin Fruit Yield and Quality Obtained with Organic Mulches, Synthetic Mulches, Cultivation, and Glyphosate. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 795-799.	0.5	57
58	Nitrogen Uptake by Faba Bean from15N-Labelled Oilseed-Rape Residue and Chicken Manure with Ryegrass as a Reference Crop. Plant Production Science, 2004, 7, 371-376.	0.9	5
59	Composting of rice straw with oilseed rape cake and poultry manure and its effects on faba bean (Vicia faba L.) growth and soil properties. Bioresource Technology, 2004, 93, 183-189.	4.8	101
60	Evaluation of the SPAD Value in Faba Bean (Vicia fabaL.) Leaves in Relation to Different Fertilizer Applications. Plant Production Science, 2003, 6, 185-189.	0.9	29