
JesÃ^os Olivero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8001431/publications.pdf Version: 2024-02-01

IFSúS OLIVERO

#	Article	IF	CITATIONS
1	Mapping the Risk for West Nile Virus Transmission, Africa. Emerging Infectious Diseases, 2022, 28, 777-785.	4.3	8
2	An analytically derived delineation of the West African Coastal Province based on bivalves. Diversity and Distributions, 2022, 28, 2791-2805.	4.1	5
3	Population interconnectivity over the past 120,000 years explains distribution and diversity of Central African hunter-gatherers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113936119.	7.1	9
4	Yellow fever surveillance suggests zoonotic and anthroponotic emergent potential. Communications Biology, 2022, 5, .	4.4	6
5	Combining favorability modeling with collaborative geoâ€visual analysis to improve agricultural pest management. Transactions in CIS, 2021, 25, 985-1008.	2.3	0
6	Predicting the spatio-temporal spread of West Nile virus in Europe. PLoS Neglected Tropical Diseases, 2021, 15, e0009022.	3.0	33
7	Worldwide dynamic biogeography of zoonotic and anthroponotic dengue. PLoS Neglected Tropical Diseases, 2021, 15, e0009496.	3.0	16
8	Predicting the spatio-temporal spread of West Nile virus in Europe. , 2021, 15, e0009022.		0
9	Predicting the spatio-temporal spread of West Nile virus in Europe. , 2021, 15, e0009022.		0
10	Predicting the spatio-temporal spread of West Nile virus in Europe. , 2021, 15, e0009022.		0
11	Predicting the spatio-temporal spread of West Nile virus in Europe. , 2021, 15, e0009022.		0
12	Predicting the spatio-temporal spread of West Nile virus in Europe. , 2021, 15, e0009022.		0
13	Predicting the spatio-temporal spread of West Nile virus in Europe. , 2021, 15, e0009022.		0
14	Modelling species distributions limited by geographical barriers: A case study with African and American primates. Global Ecology and Biogeography, 2020, 29, 444-453.	5.8	10
15	Human activities link fruit bat presence to Ebola virus disease outbreaks. Mammal Review, 2020, 50, 1-10.	4.8	30
16	Mapping the availability of bushmeat for consumption in Central African cities. Environmental Research Letters, 2019, 14, 094002.	5.2	24
17	Applying fuzzy logic to assess the biogeographical risk of dengue in South America. Parasites and Vectors, 2019, 12, 428.	2.5	22
18	Favourability for the presence of wild rabbit warrens in motorway verges: Implications for the spread of a native agricultural pest species. Ecological Indicators, 2019, 104, 398-404.	6.3	7

Jesús Olivero

#	Article	IF	CITATIONS
19	Effects of atmospheric oscillations on infectious diseases: the case of Chagas disease in Chile. Memorias Do Instituto Oswaldo Cruz, 2019, 114, e180569.	1.6	2
20	Spatial modelling for predicting potential wildlife distributions and human impacts in the Dja Forest Reserve, Cameroon. Biological Conservation, 2019, 230, 104-112.	4.1	8
21	Accounting for uncertainty in assessing the impact of climate change on biodiversity hotspots in Spain. Animal Biodiversity and Conservation, 2019, , 355-367.	0.5	4
22	Pathogeography: leveraging the biogeography of human infectious diseases for global health management. Ecography, 2018, 41, 1411-1427.	4.5	68
23	The Legal International Wildlife Trade Favours Invasive Species Establishment: The Monk and Ring-Necked Parakeets in Spain. Ardeola, 2018, 65, 233.	0.7	13
24	A largeâ€scale assessment of European rabbit damage to agriculture in Spain. Pest Management Science, 2018, 74, 111-119.	3.4	20
25	Mammalian biogeography and the Ebola virus in Africa. Mammal Review, 2017, 47, 24-37.	4.8	38
26	Environmental factors determining the establishment of the African Longâ€legged Buzzard <i>Buteo rufinus cirtensis</i> in Western Europe. Ibis, 2017, 159, 331-342.	1.9	8
27	Modelling the Covariance Structure in Marginal Multivariate Count Models: Hunting in Bioko Island. Journal of Agricultural, Biological, and Environmental Statistics, 2017, 22, 446-464.	1.4	5
28	Recent loss of closed forests is associated with Ebola virus disease outbreaks. Scientific Reports, 2017, 7, 14291.	3.3	134
29	Protected African rainforest mammals and climate change. African Journal of Ecology, 2016, 54, 392-397.	0.9	1
30	Comparison of approaches to combine species distribution models based on different sets of predictors. Ecography, 2016, 39, 561-571.	4.5	21
31	The relative length of the cardiac bulbus arteriosus reflects phylogenetic relationships among elasmobranchs. Zoologischer Anzeiger, 2016, 263, 84-91.	0.9	4
32	Distribution and Numbers of Pygmies in Central African Forests. PLoS ONE, 2016, 11, e0144499.	2.5	31
33	Differences between Pygmy and Non-Pygmy Hunting in Congo Basin Forests. PLoS ONE, 2016, 11, e0161703.	2.5	22
34	Using indigenous knowledge to link land cover mapping with land use in the Venezuelan Amazon. Revista De Biologia Tropical, 2016, 64, 1661-82.	0.4	6
35	Testing the efficacy of downscaling in species distribution modelling: a comparison between MaxEnt and Favourability Function models. Animal Biodiversity and Conservation, 2016, 39, 99-114.	0.5	16
36	Disentangling the relative effects of bushmeat availability on human nutrition in central Africa. Scientific Reports, 2015, 5, 8168.	3.3	69

Jesús Olivero

#	Article	IF	CITATIONS
37	Correlates of bushmeat in markets and depletion of wildlife. Conservation Biology, 2015, 29, 805-815.	4.7	59
38	Uncertainty in distribution forecasts caused by taxonomic ambiguity under climate change scenarios: a case study with two newt species in mainland Spain. Journal of Biogeography, 2014, 41, 111-121.	3.0	21
39	Integrating Sustainable Hunting in Biodiversity Protection in Central Africa: Hot Spots, Weak Spots, and Strong Spots. PLoS ONE, 2014, 9, e112367.	2.5	24
40	Integrating Fuzzy Logic and Statistics to Improve the Reliable Delimitation of Biogeographic Regions and Transition Zones. Systematic Biology, 2013, 62, 1-21.	5.6	38
41	Comparative assessment of different methods for using land-cover variables for distribution modelling of <i>Salamandra salamandra longirotris</i> . Environmental Conservation, 2013, 40, 48-59.	1.3	10
42	Estimating How Inflated or Obscured Effects of Climate Affect Forecasted Species Distribution. PLoS ONE, 2013, 8, e53646.	2.5	30
43	Impact of land-use changes on red-legged partridge conservation in the Iberian Peninsula. Environmental Conservation, 2012, 39, 337-346.	1.3	20
44	Geographical Gradients in Argentinean Terrestrial Mammal Species Richness and Their Environmental Correlates. Scientific World Journal, The, 2012, 2012, 1-13.	2.1	0
45	Fuzzy Chorotypes as a Conceptual Tool to Improve Insight into Biogeographic Patterns. Systematic Biology, 2011, 60, 645-660.	5.6	44
46	Combining climate with other influential factors for modelling the impact of climate change on species distribution. Climatic Change, 2011, 108, 135-157.	3.6	51
47	Macro-environmental modelling of the current distribution of Undaria pinnatifida (Laminariales,) Tj ETQq1 1 0.7	84314 rgB 2.4	T /9gerlock 1
48	Species distribution models in climate change scenarios are still not useful for informing policy planning: an uncertainty assessment using fuzzy logic. Ecography, 2010, 33, 304-314.	4.5	31
49	Land-use changes as a critical factor for long-term wild rabbit conservation in the Iberian Peninsula. Environmental Conservation, 2010, 37, 169-176.	1.3	32
50	Long-Term Changes in Game Species Over a Long Period of Transformation in the Iberian Mediterranean Landscape. Environmental Management, 2009, 43, 1256-1268.	2.7	54
51	Using chorotypes to deconstruct biogeographical and biodiversity patterns: the case of breeding waterbirds in Europe. Global Ecology and Biogeography, 2008, 17, 735-746.	5.8	15
52	Analysis of geographical variation in species richness within the genera Audouinella (Rhodophyta), Cystoseira (Phaeophyceae) and Cladophora (Chlorophyta) in the western Mediterranean Sea. Botanica Marina, 2005, 48, .	1.2	8
53	Latitudinal trends in breeding waterbird species richness in Europe and their environmental correlates. Biodiversity and Conservation, 2004, 13, 1997-2014.	2.6	19
54	Perfluorooctanesulfonate and Related Fluorochemicals in Human Blood from Several Countries. Environmental Science & Technology, 2004, 38, 4489-4495.	10.0	927

Jesús Olivero

#	Article	IF	CITATIONS
55	Biogeographical zonation of African hornbills and their biotic and geographic characterisations. Ostrich, 2003, 74, 39-47.	1.1	5
56	Otter (Lutra lutra) distribution modeling at two resolution scales suited to conservation planning in the Iberian Peninsula. Biological Conservation, 2003, 114, 377-387.	4.1	100
57	Testing for inter-drainage connections on the basis of the distribution pattern of endemic freshwater fishes. Fundamental and Applied Limnology, 2000, 150, 101-116.	0.7	7