
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/800107/publications.pdf Version: 2024-02-01

ΤΑΝΙΑ ΚΑΓΓΙΟ

#	Article	IF	CITATIONS
1	Electrochemical Activation of Single-Walled Carbon Nanotubes with Pseudo-Atomic-Scale Platinum for the Hydrogen Evolution Reaction. ACS Catalysis, 2017, 7, 3121-3130.	5.5	279
2	Singleâ€Shell Carbonâ€Encapsulated Iron Nanoparticles: Synthesis and High Electrocatalytic Activity for Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2015, 54, 4535-4538.	7.2	268
3	Highly active nitrogen-doped few-layer graphene/carbon nanotube composite electrocatalyst for oxygen reduction reaction in alkaline media. Carbon, 2014, 73, 361-370.	5.4	251
4	Is the H2 economy realizable in the foreseeable future? Part I: H2 production methods. International Journal of Hydrogen Energy, 2020, 45, 13777-13788.	3.8	186
5	Is the H2 economy realizable in the foreseeable future? Part III: H2 usage technologies, applications, and challenges and opportunities. International Journal of Hydrogen Energy, 2020, 45, 28217-28239.	3.8	139
6	Is the H2 economy realizable in the foreseeable future? Part II: H2 storage, transportation, and distribution. International Journal of Hydrogen Energy, 2020, 45, 20693-20708.	3.8	129
7	Effect of Li ₄ Ti ₅ O ₁₂ Particle Size on the Performance of Lithium Ion Battery Electrodes at High C-Rates and Low Temperatures. Journal of Physical Chemistry C, 2015, 119, 2277-2283.	1.5	124
8	Comparison of methanol, ethanol and iso-propanol oxidation on Pt and Pd electrodes in alkaline media studied by HPLC. Electrochemistry Communications, 2011, 13, 466-469.	2.3	119
9	Biomimetic Oxygen Reduction by Cofacial Porphyrins at a Liquid–Liquid Interface. Journal of the American Chemical Society, 2012, 134, 5974-5984.	6.6	118
10	Straightforward synthesis of nitrogen-doped carbon nanotubes as highly active bifunctional electrocatalysts for full water splitting. Journal of Catalysis, 2017, 353, 19-27.	3.1	105
11	Enhanced oxygen reduction reaction activity of iron-containing nitrogen-doped carbon nanotubes for alkaline direct methanol fuel cell application. Journal of Power Sources, 2016, 332, 129-138.	4.0	86
12	Atomic Layer Deposition Preparation of Pd Nanoparticles on a Porous Carbon Support for Alcohol Oxidation. Journal of Physical Chemistry C, 2011, 115, 23067-23073.	1.5	80
13	Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films. Nanotechnology, 2016, 27, 235403.	1.3	79
14	Versatile Synthetic Route to Tailor-Made Proton Exchange Membranes for Fuel Cell Applications by Combination of Radiation Chemistry of Polymers with Nitroxide-Mediated Living Free Radical Graft Polymerization. Macromolecules, 2004, 37, 9909-9915.	2.2	75
15	Electrochemical synthesis of hydrogen peroxide: Rotating disk electrode and fuel cell studies. Electrochimica Acta, 2007, 52, 7262-7269.	2.6	75
16	Transition metal-nitrogen co-doped carbide-derived carbon catalysts for oxygen reduction reaction in alkaline direct methanol fuel cell. Applied Catalysis B: Environmental, 2017, 219, 276-286.	10.8	72
17	Synthesis of proton-conducting membranes by the utilization of preirradiation grafting and atom transfer radical polymerization techniques. Journal of Polymer Science Part A, 2002, 40, 591-600.	2.5	70
18	Durability of different carbon nanomaterial supports with PtRu catalyst in a direct methanol fuel cell. International Journal of Hydrogen Energy, 2012, 37, 3415-3424.	3.8	69

#	Article	IF	CITATIONS
19	Radiation-grafted ion-exchange membranes: Influence of the initial matrix on the synthesis and structure. Journal of Polymer Science Part A, 2001, 39, 3008-3017.	2.5	67
20	Electroreduction of oxygen on palladium nanoparticles supported on nitrogen-doped graphene nanosheets. Electrochimica Acta, 2014, 137, 206-212.	2.6	66
21	Maghemite nanoparticles decorated on carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 5216-5222.	5.2	65
22	Review Article: Recommended reading list of early publications on atomic layer deposition—Outcome of the "Virtual Project on the History of ALD― Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	65
23	Catalyst Support Effect on the Activity and Durability of Magnetic Nanoparticles: toward Design of Advanced Electrocatalyst for Full Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 31300-31311.	4.0	64
24	High oxygen reduction activity of few-walled carbon nanotubes with low nitrogen content. Applied Catalysis B: Environmental, 2014, 158-159, 233-241.	10.8	62
25	Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell. Journal of Power Sources, 2015, 281, 94-102.	4.0	58
26	Functionalized Carbon Nanotubes with Ni(II) Bipyridine Complexes as Efficient Catalysts for the Alkaline Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 8033-8041.	5.5	56
27	Hydrogen production by methanol–water solution electrolysis with an alkaline membrane cell. Journal of Power Sources, 2013, 229, 32-35.	4.0	55
28	Molybdenum carbide nanoparticles as a catalyst for the hydrogen evolution reaction and the effect of pH. Journal of Catalysis, 2016, 334, 102-109.	3.1	53
29	Title is missing!. Journal of Applied Electrochemistry, 2002, 32, 11-18.	1.5	51
30	Lithium-ion capacitors using carbide-derived carbon as the positive electrode – A comparison of cells with graphite and Li4Ti5O12 as the negative electrode. Journal of Power Sources, 2016, 331, 156-166.	4.0	51
31	Laser synthesis, structure and chemical properties of colloidal nickel-molybdenum nanoparticles for the substitution of noble metals in heterogeneous catalysis. Journal of Colloid and Interface Science, 2017, 489, 57-67.	5.0	51
32	Electrochemically anodized porous silicon: Towards simple and affordable anode material for Li-ion batteries. Scientific Reports, 2017, 7, 7880.	1.6	48
33	Extensive comparison of doping and coating strategies for Ni-rich positive electrode materials. Journal of Power Sources, 2022, 540, 231633.	4.0	47
34	In and ex situ characterization of an anion-exchange membrane for alkaline direct methanol fuel cell (ADMFC). Journal of Power Sources, 2011, 196, 6153-6159.	4.0	43
35	Electrooxidation of methanol and 2-propanol mixtures at platinum single crystal electrodes. Electrochimica Acta, 2009, 54, 6576-6583.	2.6	42
36	Carbon corrosion properties and performance of multi-walled carbon nanotube support with and without nitrogen-functionalization in fuel cell electrodes. Electrochimica Acta, 2020, 332, 135384.	2.6	42

#	Article	IF	CITATIONS
37	Laser additive manufacturing of stainless steel micro fuel cells. Journal of Power Sources, 2014, 272, 356-361.	4.0	41
38	All-nanotube stretchable supercapacitor with low equivalent series resistance. Scientific Reports, 2017, 7, 17449.	1.6	41
39	Low-temperature aging mechanisms of commercial graphite/LiFePO4 cells cycled with a simulated electric vehicle load profile—A post-mortem study. Journal of Energy Storage, 2018, 20, 344-356.	3.9	41
40	Carbon-supported shape-controlled Pt nanoparticle electrocatalysts for direct alcohol fuel cells. Electrochemistry Communications, 2015, 55, 47-50.	2.3	39
41	New ETFE-based membrane for direct methanol fuel cell. Electrochimica Acta, 2005, 50, 3453-3460.	2.6	38
42	Role of impurity copper in Li-ion battery recycling to LiCoO2 cathode materials. Journal of Power Sources, 2020, 450, 227630.	4.0	38
43	Efficient electrochemical hydrogen evolution reaction and solar activity via bi-functional GO/Co3O4–TiO2 nano hybrid structure. International Journal of Hydrogen Energy, 2020, 45, 17410-17421.	3.8	38
44	Improved Hydrogen Oxidation Reaction Activity and Stability of Buried Metal-Oxide Electrocatalyst Interfaces. Chemistry of Materials, 2020, 32, 7716-7724.	3.2	38
45	Oxygen reduction at a water-1,2-dichlorobenzene interface catalyzed by cobalt tetraphenyl porphyrine – A fuel cell approach. International Journal of Hydrogen Energy, 2011, 36, 10033-10043.	3.8	37
46	Pt catalysts modified with Bi: Enhancement of the catalytic activity for alcohol oxidation in alkaline media. Journal of Catalysis, 2014, 312, 78-86.	3.1	37
47	Stretchable and transparent supercapacitors based on aerosol synthesized single-walled carbon nanotube films. RSC Advances, 2016, 6, 93915-93921.	1.7	37
48	The correlation of electrochemical and fuel cell results for alcohol oxidation in acidic and alkaline media. Electrochimica Acta, 2013, 87, 730-738.	2.6	36
49	Enhanced performance of a silicon microfabricated direct methanol fuel cell with PtRu catalysts supported on few-walled carbon nanotubes. Energy, 2014, 65, 612-620.	4.5	36
50	Title is missing!. Journal of Applied Electrochemistry, 2003, 33, 505-514.	1.5	35
51	Water balance in a free-breathing polymer electrolyte membrane fuel cell. Journal of Applied Electrochemistry, 2004, 34, 31-36.	1.5	35
52	A 3D model for the free-breathing direct methanol fuel cell: Methanol crossover aspects and validations with current distribution measurements. Journal of Power Sources, 2007, 172, 805-815.	4.0	35
53	Water soluble binder for fabrication of Li4Ti5O12 electrodes. Journal of Power Sources, 2013, 226, 134-139.	4.0	35
54	Direct alcohol fuel cells: Increasing platinum performance by modification with sp-group metals. Journal of Power Sources, 2015, 275, 341-350.	4.0	34

#	Article	IF	CITATIONS
55	Tailoring properties of platinum supported catalysts by irreversible adsorbed adatoms toward ethanol oxidation for direct ethanol fuel cells. Applied Catalysis B: Environmental, 2013, 140-141, 378-385.	10.8	33
56	Water in different poly(styrene sulfonic acid)-grafted fluoropolymers. Journal of Applied Polymer Science, 2002, 86, 33-42.	1.3	32
57	Stainless steel micro fuel cells with enclosed channels by laser additive manufacturing. Energy, 2016, 106, 475-481.	4.5	31
58	Co-electrodeposited Mesoporous PtM (M=Co, Ni, Cu) as an Active Catalyst for Oxygen Reduction Reaction in a Polymer Electrolyte Membrane Fuel Cell. Electrochimica Acta, 2017, 230, 49-57.	2.6	31
59	A platinum nanowire electrocatalyst on single-walled carbon nanotubes to drive hydrogen evolution. Applied Catalysis B: Environmental, 2020, 265, 118582.	10.8	31
60	Conjugation with carbon nanotubes improves the performance of mesoporous silicon as Li-ion battery anode. Scientific Reports, 2020, 10, 5589.	1.6	31
61	Effect of the initial matrix material on the structure of radiation-grafted ion-exchange membranes: Wide-angle and small-angle X-ray scattering studies. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1539-1555.	2.4	30
62	Highly efficient cathode catalyst layer based on nitrogen-doped carbon nanotubes for the alkaline direct methanol fuel cell. Applied Catalysis B: Environmental, 2014, 156-157, 341-349.	10.8	30
63	Evidence of Local pH Changes during Ethanol Oxidation at Pt Electrodes in Alkaline Media. ChemElectroChem, 2015, 2, 1254-1258.	1.7	30
64	Highly active platinum nanoparticles supported by nitrogen/sulfur functionalized graphene composite for ethanol electro-oxidation. Electrochimica Acta, 2017, 242, 315-326.	2.6	30
65	Standardized Procedures Important for Improving Single-Component Ceramic Fuel Cell Technology. ACS Energy Letters, 2017, 2, 2752-2755.	8.8	30
66	Comparative study of carbon free and carbon containing Li4Ti5O12 electrodes. Journal of Power Sources, 2015, 279, 481-486.	4.0	29
67	Two orders of magnitude enhancement in oxygen evolution reactivity of La0.7Sr0.3Fe1â^'Ni O3â^' by improving the electrical conductivity. Nano Energy, 2022, 93, 106794.	8.2	26
68	Confocal Raman Spectroscopic Investigations of Fuel Cell Tested Sulfonated Styrene Grafted Poly(vinylidene fluoride) Membranes. Journal of the Electrochemical Society, 2002, 149, A206.	1.3	25
69	Atomic layer deposition in the preparation of Bi-metallic, platinum-based catalysts for fuel cell applications. Applied Catalysis B: Environmental, 2014, 148-149, 11-21.	10.8	25
70	Comprehensive study to design advanced metal-carbide@garaphene and metal-carbide@iron oxide nanoparticles with tunable structure by the laser ablation in liquid. Journal of Colloid and Interface Science, 2019, 556, 180-192.	5.0	25
71	Performance of Liquid Fuels in a Platinum-Ruthenium-Catalysed Polymer Electrolyte Fuel Cell. Platinum Metals Review, 2009, 53, 58-66.	1.5	24
72	The effect of Nafion content in a graphitized carbon nanofiber-based anode for the direct methanol fuel cell. International Journal of Hydrogen Energy, 2012, 37, 19082-19091.	3.8	24

#	Article	IF	CITATIONS
73	The activity of ALD-prepared PtCo catalysts for ethanol oxidation in alkaline media. Journal of Catalysis, 2014, 309, 38-48.	3.1	24
74	Flexible self-powered piezo-supercapacitor system for wearable electronics. Nanotechnology, 2018, 29, 325501.	1.3	24
75	Fast and Stable Electrochemical Production of H ₂ O ₂ by Electrode Architecture Engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 7120-7129.	3.2	24
76	Flexible and Mechanically Durable Asymmetric Supercapacitor Based on NiCoâ€Layered Double Hydroxide and Nitrogenâ€Doped Graphene Using a Simple Fabrication Method. Energy Technology, 2019, 7, 1801002.	1.8	23
77	Trimetallic catalyst based on PtRu modified by irreversible adsorption of Sb for direct ethanol fuel cells. Journal of Catalysis, 2015, 329, 69-77.	3.1	22
78	Electrochemical Properties of Nitrogen and Oxygen Doped Reduced Graphene Oxide. Energies, 2020, 13, 312.	1.6	22
79	Relationship Between Methanol Permeability and Structure of Different Radiation-Grafted Membranes. Fuel Cells, 2004, 4, 328-336.	1.5	21
80	Bipolar membranes in forward bias region for fuel cell reactors. Electrochimica Acta, 2006, 51, 1165-1171.	2.6	21
81	Current distribution measurements with a free-breathing direct methanol fuel cell using PVDF-g-PSSA and Nafion® 117 membranes. Journal of Power Sources, 2007, 163, 768-776.	4.0	21
82	Reuse of LiCoO ₂ Electrodes Collected from Spent Liâ€lon Batteries after Electrochemical Reâ€Lithiation of the Electrode. ChemSusChem, 2021, 14, 2434-2444.	3.6	21
83	Temperature dependent product distribution of electrochemical CO2 reduction on CoTPP/MWCNT composite. Applied Catalysis B: Environmental, 2022, 304, 120863.	10.8	21
84	Flexible supercapacitors based on free-standing polyaniline/single-walled carbon nanotube films. Journal of Power Sources, 2022, 541, 231691.	4.0	21
85	Proton transport in radiation-grafted membranes for fuel cells as detected by SECM. Electrochemistry Communications, 2003, 5, 561-565.	2.3	20
86	Characterization of the novel ETFE-based membrane. Journal of Membrane Science, 2006, 280, 20-28.	4.1	20
87	Joint effect of ethylene and toluene on carbon nanotube growth. Carbon, 2022, 189, 474-483.	5.4	20
88	Temperature dependent performance and catalyst layer properties of PtRu supported on modified few-walled carbon nanotubes for the alkaline direct ethanol fuel cell. Journal of Electroanalytical Chemistry, 2017, 793, 48-57.	1.9	19
89	Electrochemical enhancement of optoelectronic performance of transparent and conducting single-walled carbon nanotube films. Carbon, 2020, 167, 244-248.	5.4	19
90	Multifunctional Elastic Nanocomposites with Extremely Low Concentrations of Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2022, 14, 18866-18876.	4.0	19

#	Article	IF	CITATIONS
91	CO ₂ electroreduction on bimetallic Pd–In nanoparticles. Catalysis Science and Technology, 2020, 10, 4264-4270.	2.1	18
92	Understanding the Stabilizing Effects of Nanoscale Metal Oxide and Li–Metal Oxide Coatings on Lithium-Ion Battery Positive Electrode Materials. ACS Applied Materials & Interfaces, 2021, 13, 42773-42790.	4.0	18
93	Relationships between polypyrrole synthesis conditions, its morphology and electronic structure with supercapacitor properties measured in electrolytes with different ions and pH values. Electrochimica Acta, 2021, 391, 138892.	2.6	18
94	Stable Reference Electrode in Polymer Electrolyte Membrane Electrolyser for Three-Electrode Measurements. Journal of the Electrochemical Society, 2019, 166, F1326-F1336.	1.3	17
95	Designing of low Pt electrocatalyst through immobilization on metal@C support for efficient hydrogen evolution reaction in acidic media. Journal of Electroanalytical Chemistry, 2021, 896, 115076.	1.9	16
96	Comparative analysis on the thermal, structural, and electrochemical properties of Al-doped Li7La3Zr2O12 solid electrolytes through solid state and sol-gel routes. Solid State Ionics, 2022, 380, 115943.	1.3	16
97	Bismuth and CO Coadsorption on Platinum Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 23100-23110.	1.5	15
98	Carbocatalytic Oxidative Dehydrogenative Couplings of (Hetero)Aryls by Oxidized Multiâ€Walled Carbon Nanotubes in Liquid Phase. Chemistry - A European Journal, 2019, 25, 12288-12293.	1.7	15
99	Mesoporous Carbon Microfibers for Electroactive Materials Derived from Lignocellulose Nanofibrils. ACS Sustainable Chemistry and Engineering, 2020, 8, 8549-8561.	3.2	15
100	A numerical performance study of a fixed-bed reactor for methanol synthesis by CO2 hydrogenation. International Journal of Hydrogen Energy, 2021, 46, 15635-15648.	3.8	15
101	What We Currently Know about Carbonâ€Supported Metal and Metal Oxide Nanomaterials in Electrochemical CO ₂ Reduction. ChemElectroChem, 2021, 8, 2397-2406.	1.7	15
102	Superior environmentally friendly stretchable supercapacitor based on nitrogen-doped graphene/hydrogel and single-walled carbon nanotubes. Journal of Energy Storage, 2020, 30, 101505.	3.9	15
103	Aging and degradation of lithium-ion batteries. , 2015, , 263-279.		14
104	Experimental and Computational Investigation of Hydrogen Evolution Reaction Mechanism on Nitrogen Functionalized Carbon Nanotubes. ChemCatChem, 2018, 10, 3872-3882.	1.8	14
105	Intersubband Plasmon Observation in Electrochemically Gated Carbon Nanotube Films. ACS Applied Electronic Materials, 2020, 2, 195-203.	2.0	14
106	Cascading use of barley husk ash to produce silicon for composite anodes of Li-ion batteries. Materials Chemistry and Physics, 2020, 245, 122736.	2.0	14
107	Active IrO2 and NiO Thin Films Prepared by Atomic Layer Deposition for Oxygen Evolution Reaction. Catalysts, 2020, 10, 92.	1.6	14
108	On the stability of polyaniline/carbon nanotube composites as binder-free positive electrodes for electrochemical energy storage. Electrochimica Acta, 2020, 336, 135735.	2.6	14

#	Article	IF	CITATIONS
109	Glucose derived carbon quantum dots on tungstate-titanate nanocomposite for hydrogen energy evolution and solar light catalysis. Journal of Nanostructure in Chemistry, 2022, 12, 611-623.	5.3	14
110	Simple immobilization of pyrroloquinoline quinone on few-walled carbon nanotubes. Electrochemistry Communications, 2010, 12, 1257-1260.	2.3	12
111	Integration of carbon felt gas diffusion layers in silicon micro fuel cells. Journal of Micromechanics and Microengineering, 2012, 22, 094006.	1.5	12
112	Activation of commercial Pt/C catalyst toward glucose electro-oxidation by irreversible Bi adsorption. Journal of Energy Chemistry, 2018, 27, 1446-1452.	7.1	12
113	Carotid Intima-Media Thickness after Pediatric Renal or Liver Transplantation at High-Resolution B-Mode Ultrasonography. Transplantation Proceedings, 2010, 42, 1695-1698.	0.3	11
114	Bulk-Aluminum Microfabrication for Micro Fuel Cells. Journal of Microelectromechanical Systems, 2014, 23, 372-379.	1.7	11
115	Al2O3 coating grown on Nafion membranes by atomic layer deposition. Journal of Membrane Science, 2015, 495, 101-109.	4.1	11
116	New insights in Alâ€doping effects on the <scp> LiNiO ₂ </scp> positive electrode material by a solâ€gel method. International Journal of Energy Research, 2021, 45, 10489-10499.	2.2	11
117	Effect of Copper-Doping on LiNiO2 Positive Electrode for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 140545.	1.3	11
118	Picosecond laser ablation for silicon micro fuel cell fabrication. Journal of Micromechanics and Microengineering, 2013, 23, 055021.	1.5	10
119	Waterâ€ 5 oluble Acrylate Binder for Graphite Electrodes in Lithiumâ€ l on Batteries. Energy Technology, 2016, 4, 470-472.	1.8	10
120	High Performance Hydrogen Evolution Reaction Catalyst Based on Singleâ€Walled Carbon Nanotubes Decorated by RuO x Nanoparticles. ChemElectroChem, 2020, 7, 2651-2659.	1.7	10
121	Biocarbon from brewery residues as a counter electrode catalyst in dye solar cells. Electrochimica Acta, 2021, 368, 137583.	2.6	10
122	High performance silicon electrode enabled by titanicone coating. Scientific Reports, 2022, 12, 137.	1.6	10
123	Methanol, Ethanol and Iso-Propanol Performance in Alkaline Direct Alcohol Fuel Cell (ADAFC). ECS Transactions, 2010, 33, 1701-1714.	0.3	9
124	Proton conductive reinforced poly(ethyleneâ€ <i>co</i> â€styrene) membranes. Journal of Applied Polymer Science, 2012, 124, 1511-1519.	1.3	9
125	Fully integrated DC-DC converter and a 0.4V 32-bit CPU with timing-error prevention supplied from a prototype 1.55V Li-ion battery. , 2015, , .		8
126	The effect of synthesis modifications on the lithium cobalt oxide using commercial precursors. Electrochimica Acta, 2019, 327, 135012.	2.6	8

#	Article	IF	CITATIONS
127	Hydrogen evolution in alkaline medium on intratube and surface decorated PtRu catalyst. Applied Catalysis B: Environmental, 2022, 315, 121541.	10.8	8
128	Silicon nanograss as micro fuel cell gas diffusion layer. Micro and Nano Letters, 2010, 5, 382.	0.6	7
129	Electrochemical and Physical Characterization of Pt Activated Micromesoporous Vanadium Carbide Derived Carbon Electrodes in Sulfuric Acid Solution. Journal of the Electrochemical Society, 2013, 160, F923-F930.	1.3	7
130	Roomâ€Temperature Micropillar Growth of Lithium–Titanate–Carbon Composite Structures by Selfâ€Biased Direct Current Magnetron Sputtering for Lithium Ion Microbatteries. Advanced Functional Materials, 2019, 29, 1904306.	7.8	7
131	Electronic transitions of SWCNTs in comparison to GO on Mn ₃ O ₄ /TiO ₂ nanocomposites for hydrogen energy generation and solar photocatalysis. New Journal of Chemistry, 2021, 45, 2431-2442.	1.4	7
132	Long-term cycling behavior of Mg-doped LiCoO2 materials investigated with the help of laboratory scale X-ray absorption near-edge spectroscopy. Materials Today Energy, 2022, 27, 101040.	2.5	7
133	Carbide Derived Carbon Supported Pt Nanoparticles with Optimum Size and Amount for Efficient Oxygen Reduction Reaction Kinetics. Journal of the Electrochemical Society, 2017, 164, F448-F453.	1.3	6
134	Benzenedisulfonic Acid as an ALD/MLD Building Block for Crystalline Metalâ€Organic Thin Films**. Chemistry - A European Journal, 2021, 27, 8799-8803.	1.7	6
135	Fuel Cells and Batteries. , 2008, , 259-276.		5
136	The electrochemical activity of two binary alloy catalysts toward oxygen reduction reaction in 0.1ÂM KOH. Journal of Solid State Electrochemistry, 2018, 22, 31-40.	1.2	5
137	Tailoring electrochemical efficiency of hydrogen evolution by fine tuning of TiOx/RuOx composite cathode architecture. International Journal of Hydrogen Energy, 2019, 44, 10593-10603.	3.8	5
138	In-situ dilatometry and impedance spectroscopy characterization of single walled carbon nanotubes blended LiNi0.6Mn0.2Co0.2O2 electrode with enhanced performance. Electrochimica Acta, 2022, 412, 140093.	2.6	5
139	SAXS studies on Kynar-based membranes for fuel cells. Journal of Applied Crystallography, 2000, 33, 723-726.	1.9	4
140	Optimization and aging ofÂPt nanowires supported on single-walled carbon nanotubes as a cathode catalyst in polymer electrolyte membrane water electrolyser. International Journal of Hydrogen Energy, 2020, 45, 19121-19132.	3.8	4
141	Chlorine in NiO promotes electroreduction of CO2 to formate. Applied Materials Today, 2022, 28, 101528.	2.3	4
142	Effect of a Surfactant Assisted Synthesis on the Electrochemical Performance of a LiFePO4-CNT Composite Electrode. International Journal of Material Science, 2014, 4, 1.	0.4	3
143	Function composition of modified reduced graphite oxide. Materials Today Chemistry, 2020, 17, 100311.	1.7	3

#	Article	IF	CITATIONS
145	Symmetric silicon micro fuel cell with porous electrodes. , 2009, , .		1
146	Simple Stacking Methods for Silicon Micro Fuel Cells. Micromachines, 2014, 5, 558-569.	1.4	1
147	Increasing performance and stability of mass-manufacturable biobatteries by ink modification. Sensing and Bio-Sensing Research, 2015, 4, 61-69.	2.2	1
148	Conductivity of LTO/LFP Electrodes for Li-Ion Batteries. ECS Meeting Abstracts, 2010, , .	0.0	0
149	Battery development for ultra-low-voltage systems. , 2014, , .		0
150	Increasing the Operational Lifetime of a Printed Enzymatic Power Source using Superabsorbent Polymers as the Anode Support. Energy Technology, 2015, 3, 1080-1083.	1.8	0
151	The Influence of the Oxygen Partial Pressure on the Oxygen Reduction Reaction Kinetics for the Low Platinum Loading Catalysts. ECS Transactions, 2017, 77, 1283-1290.	0.3	0
152	Electrocatalyst nanoparticles go with the flow. Nature Catalysis, 2021, 4, 445-446.	16.1	0