Allison D Fryer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8000968/publications.pdf

Version: 2024-02-01

76326 91884 5,457 120 40 69 citations h-index g-index papers 123 123 123 4754 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Eosinophils and airway nerves in asthma. , 2022, , 193-203.		1
2	Multicolor labeling of airway neurons and analysis of parasympathetic heterogeneity. Scientific Reports, 2022, 12, 5006.	3.3	2
3	Unique Allergic Asthma Phenotypes in Offspring of House Dust Mite–exposed Mice. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, 89-98.	2.9	7
4	Airway Sensory Nerve Density Is Increased in Chronic Cough. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 348-355.	5 . 6	43
5	Mini review: Neural mechanisms underlying airway hyperresponsiveness. Neuroscience Letters, 2021, 751, 135795.	2.1	9
6	Protective effects of eosinophils against COVID-19: More than an ACE(2) in the hole?. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 2539-2540.	3.8	9
7	Pioglitazone prevents obesity-related airway hyperreactivity and neuronal M ₂ receptor dysfunction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L236-L247.	2.9	7
8	TLR7 is expressed by support cells, but not sensory neurons, in ganglia. Journal of Neuroinflammation, 2021, 18, 209.	7.2	0
9	Airway Sensory Nerve Plasticity in Asthma and Chronic Cough. Frontiers in Physiology, 2021, 12, 720538.	2.8	13
10	Metformin prevents airway hyperreactivity in rats with dietary obesity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L1105-L1118.	2.9	9
11	Identifying a reference list of respiratory sensitizers for the evaluation of novel approaches to study respiratory sensitization. Critical Reviews in Toxicology, 2021, 51, 792-804.	3.9	10
12	Optogenetic Control of Airway Cholinergic Neurons <i>In Vivo</i> . American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 423-429.	2.9	8
13	lL-5 Exposure <i>In Utero</i> Increases Lung Nerve Density and Airway Reactivity in Adult Offspring. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 493-502.	2.9	26
14	Lung eosinophils increase vagus nerve-mediated airway reflex bronchoconstriction in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L242-L251.	2.9	12
15	Transient receptor potential ankyrin-1 causes rapid bronchodilation via nonepithelial PGE ₂ . American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L943-L952.	2.9	9
16	Unraveling the connection between eosinophils and obesity. Journal of Leukocyte Biology, 2020, 108, 123-128.	3.3	26
17	Organophosphorus Pesticides Induce Cytokine Release from Differentiated Human THP1 Cells. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 620-630.	2.9	21
18	Eosinophil and airway nerve interactions in asthma. Journal of Leukocyte Biology, 2018, 104, 61-67.	3.3	68

#	Article	IF	CITATIONS
19	Eosinophils increase airway sensory nerve density in mice and in human asthma. Science Translational Medicine, 2018, 10, .	12.4	101
20	Mechanisms of organophosphorus pesticide toxicity in the context of airway hyperreactivity and asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L485-L501.	2.9	36
21	Newly divided eosinophils limit ozone-induced airway hyperreactivity in nonsensitized guinea pigs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L969-L982.	2.9	8
22	Ozone-induced eosinophil recruitment to airways is altered by antigen sensitization and tumor necrosis factor- \hat{l}_{\pm} blockade. Physiological Reports, 2017, 5, e13538.	1.7	9
23	Human and Mouse Eosinophils Have Antiviral Activity against Parainfluenza Virus. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 387-394.	2.9	86
24	Eosinophil-dependent skin innervation and itching followingÂcontact toxicant exposure in mice. Journal of Allergy and Clinical Immunology, 2015, 135, 477-487.e1.	2.9	31
25	The Influence of Sensitization on Mechanisms of Organophosphorus Pesticide–Induced Airway Hyperreactivity. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 738-747.	2.9	9
26	Interleukin- $1\hat{l}^2$ Mediates Virus-Induced M2Muscarinic Receptor Dysfunction and Airway Hyperreactivity. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 494-501.	2.9	24
27	Hyperinsulinemia Potentiates Airway Responsiveness to Parasympathetic Nerve Stimulation in Obese Rats. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 251-261.	2.9	79
28	Tissue Optical Clearing, Three-Dimensional Imaging, and Computer Morphometry in Whole Mouse Lungs and Human Airways. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 43-55.	2.9	57
29	Toll-like Receptor 7 Rapidly Relaxes Human Airways. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 664-672.	5.6	35
30	Eosinophil Cell–Cell Communication. , 2013, , 329-390.		0
31	Toll-Like Receptor–2/6 and Toll-Like Receptor–9 Agonists Suppress Viral Replication but Not Airway Hyperreactivity in Guinea Pigs. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 790-796.	2.9	18
32	Quantifying Nerve Architecture in Murine and Human Airways Using Three-Dimensional Computational Mapping. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 10-16.	2.9	18
33	Macrophage TNF-α mediates parathion-induced airway hyperreactivity in guinea pigs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L519-L529.	2.9	29
34	Dual p38/JNK Mitogen Activated Protein Kinase Inhibitors Prevent Ozone-Induced Airway Hyperreactivity in Guinea Pigs. PLoS ONE, 2013, 8, e75351.	2.5	7
35	Role of Parasympathetic Nerves and Muscarinic Receptors in Allergy and Asthma. Chemical Immunology and Allergy, 2012, 98, 48-69.	1.7	46
36	A toxicological and dermatological assessment of aryl alkyl alcohol simple acid ester derivatives when used as fragrance ingredients. Food and Chemical Toxicology, 2012, 50, S269-S313.	3.6	66

#	Article	IF	CITATIONS
37	A toxicologic and dermatologic assessment of cyclopentanones and cyclopentenones when used as fragrance ingredients. Food and Chemical Toxicology, 2012, 50, S517-S556.	3.6	54
38	Muscarinic Receptor Antagonists: Effects on Pulmonary Function. Handbook of Experimental Pharmacology, 2012, , 317-341.	1.8	94
39	A toxicological and dermatological assessment of aryl alkyl alcohols when used as fragrance ingredients. Food and Chemical Toxicology, 2012, 50, S52-S99.	3.6	51
40	Nonâ€bronchodilating mechanisms of tiotropium prevent airway hyperreactivity in a guineaâ€pig model of allergic asthma. British Journal of Pharmacology, 2012, 165, 1501-1514.	5.4	45
41	Î ² 2-Agonists Inhibit TNF-α-Induced ICAM-1 Expression in Human Airway Parasympathetic Neurons. PLoS ONE, 2012, 7, e44780.	2.5	7
42	The Therapeutic Potential of Toll-Like Receptor 7 Stimulation in Asthma. Inflammation and Allergy: Drug Targets, 2012, 11, 484-491.	1.8	36
43	Toll-like receptor 7 agonists are potent and rapid bronchodilators in guinea pigs. Journal of Allergy and Clinical Immunology, 2011, 127, 462-469.	2.9	37
44	A toxicological and dermatological assessment of macrocyclic ketones when used as fragrance ingredients. Food and Chemical Toxicology, 2011, 49, S126-S141.	3.6	23
45	A toxicological and dermatological assessment of macrocyclic lactone and lactide derivatives when used as fragrance ingredients. Food and Chemical Toxicology, 2011, 49, S219-S241.	3.6	26
46	A toxicologic and dermatologic assessment of cinnamyl phenylpropyl materials when used as fragrance ingredients. Food and Chemical Toxicology, 2011, 49, S256-S267.	3.6	5
47	Muscarinic receptor antagonists, from folklore to pharmacology; finding drugs that actually work in asthma and COPD. British Journal of Pharmacology, 2011, 163, 44-52.	5.4	126
48	Role of TNFâ€Î± in virusâ€induced airway hyperresponsiveness and neuronal M ₂ muscarinic receptor dysfunction. British Journal of Pharmacology, 2011, 164, 444-452.	5.4	31
49	Three days after a single exposure to ozone, the mechanism of airway hyperreactivity is dependent on substance P and nerve growth factor. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L176-L184.	2.9	9
50	Eosinophils Increase Neuron Branching in Human and Murine Skin and In Vitro. PLoS ONE, 2011, 6, e22029.	2.5	71
51	IFN \hat{I}^3 Increases M2 Muscarinic Receptor Expression in Cultured Sympathetic Neurons. Current Neurobiology, 2011, 2, 23-29.	1.0	5
52	Organophosphorus Pesticides Decrease M2 Muscarinic Receptor Function in Guinea Pig Airway Nerves via Indirect Mechanisms. PLoS ONE, 2010, 5, e10562.	2.5	40
53	Retinoic acid prevents virus-induced airway hyperreactivity and M ₂ receptor dysfunction via anti-inflammatory and antiviral effects. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L340-L346.	2.9	5
54	Atropine-enhanced, antigen challenge-induced airway hyperreactivity in guinea pigs is mediated by eosinophils and nerve growth factor. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L228-L237.	2.9	21

#	Article	IF	Citations
55	Neural control of airway inflammation. Current Allergy and Asthma Reports, 2009, 9, 484-490.	5.3	23
56	Etanercept prevents airway hyperresponsiveness by protecting neuronal M ₂ muscarinic receptors in antigenâ€challenged guinea pigs. British Journal of Pharmacology, 2009, 156, 201-210.	5.4	36
57	Cell Culture: Autonomic and Enteric Neurons. , 2009, , 625-632.		3
58	IL-1 Receptors Mediate Persistent, but Not Acute, Airway Hyperreactivity to Ozone in Guinea Pigs. American Journal of Respiratory Cell and Molecular Biology, 2008, 39, 730-738.	2.9	27
59	Antigen Sensitization Influences Organophosphorus Pesticide–Induced Airway Hyperreactivity. Environmental Health Perspectives, 2008, 116, 381-388.	6.0	35
60	ILâ€1 mediates persistent but not acute ozoneâ€induced airway hyperreactivity. FASEB Journal, 2008, 22, 764.11.	0.5	0
61	CCR3 chemokine expression is increased by tumor necrosis factorâ€alpha in neuroblastoma cells. FASEB Journal, 2008, 22, 664.16.	0.5	0
62	Effect of Albuterol Isomers on TNFâ€alpha; Induced ICAMâ€1 and Eotaxin Expression in Human Parasympathetic Neurons. FASEB Journal, 2008, 22, 670.18.	0.5	0
63	Macrophages mediate organophosphorus pesticideâ€induced airway hyperreactivity in guinea pigs. FASEB Journal, 2008, 22, 918.1.	0.5	0
64	Atropineâ€induced potentiation of airway hyperreactivity in antigen challenged guinea pigs is mediated by nerve growth factor. FASEB Journal, 2008, 22, 670.16.	0.5	0
65	Atropine pretreatment enhances airway hyperreactivity in antigen-challenged guinea pigs through an eosinophil-dependent mechanism. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L1126-L1135.	2.9	33
66	Expression and regulation of intercellular adhesion molecule-1 on airway parasympathetic nerves. Journal of Allergy and Clinical Immunology, 2007, 119, 1415-1422.	2.9	32
67	Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. British Journal of Pharmacology, 2006, 148, 565-578.	5.4	491
68	The changing role of eosinophils in long-term hyperreactivity following a single ozone exposure. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L627-L635.	2.9	33
69	Disruption of <i>Nrf2</i> enhances susceptibility to severe airway inflammation and asthma in mice. Journal of Experimental Medicine, 2005, 202, 47-59.	8.5	529
70	Â2-Agonist and Anticholinergic Drugs in the Treatment of Lung Disease. Proceedings of the American Thoracic Society, 2005, 2, 305-310.	3.5	71
71	Neuronal eotaxin and the effects of ccr3 antagonist on airway hyperreactivity and M2 receptor dysfunction. Journal of Clinical Investigation, 2005, 116, 228-236.	8.2	121
72	Insulin Regulates Neuronal M2 Muscarinic Receptor Function in the Ileum of Diabetic Rats. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 760-766.	2.5	13

#	Article	IF	Citations
73	Mechanisms of organophosphate insecticide-induced airway hyperreactivity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L963-L969.	2.9	76
74	Organophosphorus Insecticides Induce Airway Hyperreactivity by Decreasing Neuronal M2 Muscarinic Receptor Function Independent of Acetylcholinesterase Inhibition. Toxicological Sciences, 2004, 83, 166-176.	3.1	60
75	Role of macrophages in virus-induced airway hyperresponsiveness and neuronal M2 muscarinic receptor dysfunction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L1255-L1259.	2.9	28
76	Muscarinic acetylcholine receptors and airway diseases. , 2003, 98, 59-69.		171
77	CD8+T Lymphocytes in Viral Hyperreactivity and M2Muscarinic Receptor Dysfunction. American Journal of Respiratory and Critical Care Medicine, 2003, 167, 550-556.	5.6	36
78	Dexamethasone prevents virus-induced hyperresponsiveness via multiple mechanisms. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L451-L455.	2.9	21
79	Effects of eosinophils on nerve cell morphology and development: the role of reactive oxygen species and p38 MAP kinase. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L915-L924.	2.9	37
80	Eosinophil adhesion to cholinergic nerves via ICAM-1 and VCAM-1 and associated eosinophil degranulation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L1279-L1288.	2.9	68
81	Double-stranded RNA causes airway hyperreactivity and neuronal M ₂ muscarinic receptor dysfunction. Journal of Applied Physiology, 2002, 92, 1417-1422.	2.5	42
82	Plasticity of cholinergic and tachykinergic nerves: the convergence of the twain. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L907-L908.	2.9	2
83	Increased function of inhibitory neuronal M ₂ muscarinic receptors in trachea and ileum of diabetic rats. British Journal of Pharmacology, 2002, 135, 1355-1362.	5.4	29
84	Eosinophil recruitment to the airway nerves. Journal of Allergy and Clinical Immunology, 2001, 107, 211-218.	2.9	91
85	Structure of the human M2 muscarinic acetylcholine receptor gene and its promoter. Gene, 2001, 271, 87-92.	2.2	26
86	Selective muscarinic receptor antagonists for airway diseases. Current Opinion in Pharmacology, 2001, 1, 223-229.	3.5	44
87	Anticholinergic therapy for airway diseases. Life Sciences, 2001, 68, 2565-2572.	4.3	35
88	Glucocorticoid Treatment Increases Inhibitory M ₂ Muscarinic Receptor Expression and Function in the Airways. American Journal of Respiratory Cell and Molecular Biology, 2001, 24, 485-491.	2.9	49
89	Dysfunction of prejunctional muscarinic M2 receptors: role of environmental factors., 2001,, 107-120.		2
90	Inhibition of neuronal M2 muscarinic receptor function in the lungs by extracellular nitric oxide. British Journal of Pharmacology, 2000, 131, 312-318.	5.4	10

#	Article	IF	Citations
91	Substance P-induced airway hyperreactivity is mediated by neuronal M ₂ receptor dysfunction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L477-L486.	2.9	38
92	Effects of neurokinin receptor antagonists in virus-infected airways. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L59-L65.	2.9	22
93	Antigen-induced hyperreactivity to histamine: role of the vagus nerves and eosinophils. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L709-L714.	2.9	51
94	Ozone-induced hyperresponsiveness and blockade of M ₂ muscarinic receptors by eosinophil major basic protein. Journal of Applied Physiology, 1999, 87, 1272-1278.	2.5	58
95	Ovalbumin Sensitization Changes the Inflammatory Response to Subsequent Parainfluenza Infection. Journal of Experimental Medicine, 1999, 190, 1465-1478.	8.5	163
96	Effects of inflammatory cells on neuronal M2 muscarinic receptor function in the lung. Life Sciences, 1999, 64, 449-455.	4.3	50
97	Muscarinic Receptor Subtypes and Anticholinergic Therapy. , 1999, , 85-118.		0
98	Effects of tachykinin NK1 receptor antagonists on vagal hyperreactivity and neuronal M2 muscarinic receptor function in antigen challenged guinea-pigs. British Journal of Pharmacology, 1998, 124, 267-276.	5.4	36
99	Loss of neuronal m2 muscarinic receptors with viral infection in cultured airway parasympathetic nerves. Life Sciences, 1997, 60, 1189.	4.3	0
100	Increased function of inhibitory neuronal M ₂ muscarinic receptors in diabetic rat lungs. British Journal of Pharmacology, 1997, 121, 1287-1294.	5.4	42
101	Interaction of Nondepolarizing Muscle Relaxants with M2and M3Muscarinic Receptors in Guinea Pig Lung and Heart. Anesthesiology, 1996, 84, 155-161.	2.5	31
102	Eosinophil-Associated Inflammation in Bronchial Asthma: A Connection to the Nervous System. International Archives of Allergy and Immunology, 1995, 107, 205-207.	2.1	22
103	The effect of leukocyte depletion on pulmonary M ₂ muscarinic receptor function in parainfluenza virusâ€infected guineaâ€pigs. British Journal of Pharmacology, 1994, 112, 588-594.	5.4	42
104	Effect of inflammatory cell mediators on M2 muscarinic receptors in the lungs. Life Sciences, 1993, 52, 529-536.	4.3	51
105	Neuronal M2Muscarinic Receptor Function in Guinea-Pig Lungs Is Inhibited by Indomethacin. The American Review of Respiratory Disease, 1993, 147, 559-564.	2.9	14
106	Parainfluenza virus infection damages inhibitory M ₂ muscarinic receptors on pulmonary parasympathetic nerves in the guineaâ€pig. British Journal of Pharmacology, 1991, 102, 267-271.	5.4	162
107	Virus-Induced Airway Hyperresponsiveness â€" Possible Involvement of Neural Mechanisms. The American Review of Respiratory Disease, 1991, 144, 1422-1423.	2.9	8
108	Abnormalities in neural control of smooth muscle in virus-infected airways. Trends in Pharmacological Sciences, 1990, 11, 393-395.	8.7	16

#	Article	IF	CITATIONS
109	Effect of viral infection on inhibitory prejunctional muscarinic receptors in guinea-pig airways. European Journal of Pharmacology, 1990, 183, 1181-1182.	3.5	0
110	Parainfluenza virus type 1 reduces the affinity of agonists for muscarinic receptors in guinea-pig lung and heart. European Journal of Pharmacology, 1990, 181, 51-58.	3.5	59
111	Identification of three muscarinic receptor subtypes in rat lung using binding studies with selective antagonists. Life Sciences, 1990, 47, 611-618.	4.3	45
112	An Endogenous Factor Induces Heterogeneity of Binding Sites of Selective Muscarinic Receptor Antagonists in Rat Heart. Membrane Biochemistry, 1989, 8, 127-132.	0.6	11
113	Identification of M ₁ muscarinic receptors in pulmonary sympathetic nerves in the guineaâ€pig by use of pirenzepine. British Journal of Pharmacology, 1989, 97, 499-505.	5.4	40
114	Ipratropium bromide potentiates bronchoconstriction induced by vagal nerve stimulation in the guinea-pig. European Journal of Pharmacology, 1987, 139, 187-191.	3.5	37
115	Pancuronium and gallamine are antagonists for pre- and post-junctional muscarinic receptors in the guinea-pig lung. Naunyn-Schmiedeberg's Archives of Pharmacology, 1987, 335, 367-371.	3.0	41
116	Postganglionic muscarinic inhibitory receptors in pulmonary parasympathetic nerves in the guineaâ€pig. British Journal of Pharmacology, 1986, 88, 181-187.	5.4	72
117	Neuronal muscarinic receptors attenuate vagallyâ€induced contraction of feline bronchial smooth muscle. British Journal of Pharmacology, 1985, 86, 723-728.	5.4	120
118	The response of cat airways to histamine <i>in vivo</i> and <i>in vitro</i> . British Journal of Pharmacology, 1985, 84, 309-316.	5.4	12
119	Muscarinic inhibitory receptors in pulmonary parasympathetic nerves in the guineaâ€pig. British Journal of Pharmacology, 1984, 83, 973-978.	5.4	298
120	.beta.1-Selective adrenoceptor antagonists. 2. 4-Ether-linked phenoxypropanolamines. Journal of Medicinal Chemistry, 1983, 26, 1570-1576.	6.4	17