Dana Kühnel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8000797/publications.pdf

Version: 2024-02-01

40 papers

2,904 citations

257101 24 h-index 276539
41
g-index

41 all docs

41 docs citations

41 times ranked

4379 citing authors

#	Article	IF	CITATIONS
1	Impacts of Biofilm Formation on the Fate and Potential Effects of Microplastic in the Aquatic Environment. Environmental Science and Technology Letters, 2017, 4, 258-267.	3.9	881
2	Reducing Uncertainty and Confronting Ignorance about the Possible Impacts of Weathering Plastic in the Marine Environment. Environmental Science and Technology Letters, 2017, 4, 85-90.	3.9	372
3	Bioaccumulation and ecotoxicity of carbon nanotubes. Chemistry Central Journal, 2013, 7, 154.	2.6	229
4	Environmental mixtures of nanomaterials and chemicals: The Trojan-horse phenomenon and its relevance for ecotoxicity. Science of the Total Environment, 2018, 635, 1170-1181.	3.9	134
5	Toxicity of Tungsten Carbide and Cobalt-Doped Tungsten Carbide Nanoparticles in Mammalian Cells <i>in Vitro</i> . Environmental Health Perspectives, 2009, 117, 530-536.	2.8	121
6	Concern-driven integrated approaches to nanomaterial testing and assessment – report of the NanoSafety Cluster Working Group 10. Nanotoxicology, 2014, 8, 334-348.	1.6	118
7	The OECD expert meeting on ecotoxicology and environmental fate — Towards the development of improved OECD guidelines for the testing of nanomaterials. Science of the Total Environment, 2014, 472, 347-353.	3.9	108
8	Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line. Aquatic Toxicology, 2009, 93, 91-99.	1.9	82
9	Exploring LA-ICP-MS as a quantitative imaging technique to study nanoparticle uptake in Daphnia magna and zebrafish (Danio rerio) embryos. Analytical and Bioanalytical Chemistry, 2015, 407, 5477-5485.	1.9	65
10	An exploratory ecotoxicity study of primary microplastics versus aged in natural waters and wastewaters. Environmental Pollution, 2019, 254, 112980.	3.7	56
11	Internalisation of engineered nanoparticles into mammalian cells in vitro: influence of cell type and particle properties. Journal of Nanoparticle Research, 2011, 13, 293-310.	0.8	55
12	From the sea to the laboratory: Characterization of microplastic as prerequisite for the assessment of ecotoxicological impact. Integrated Environmental Assessment and Management, 2017, 13, 500-504.	1.6	50
13	Metal uptake and distribution in the zebrafish (Danio rerio) embryo: differences between nanoparticles and metal ions. Environmental Science: Nano, 2017, 4, 1005-1015.	2.2	49
14	Evaluating the cytotoxicity of palladium/magnetite nano-catalysts intended for wastewater treatment. Environmental Pollution, 2010, 158, 65-73.	3.7	45
15	An interlaboratory comparison of nanosilver characterisation and hazard identification: Harmonising techniques for high quality data. Environment International, 2016, 87, 20-32.	4.8	45
16	Quality of nanoplastics and microplastics ecotoxicity studies: Refining quality criteria for nanomaterial studies. Journal of Hazardous Materials, 2021, 415, 125751.	6.5	44
17	Tungsten carbide cobalt nanoparticles exert hypoxia-like effects on the gene expression level in human keratinocytes. BMC Genomics, 2010, 11, 65.	1.2	42
18	Quantification of Al2O3 nanoparticles in human cell lines applying inductively coupled plasma mass spectrometry (neb-ICP-MS, LA-ICP-MS) and flow cytometry-based methods. Journal of Nanoparticle Research, 2014, 16, 2592.	0.8	40

#	Article	IF	CITATIONS
19	The nanoGRAVUR framework to group (nano)materials for their occupational, consumer, environmental risks based on a harmonized set of material properties, applied to 34 case studies. Nanoscale, 2019, 11, 17637-17654.	2.8	38
20	Grouping concept for metal and metal oxide nanomaterials with regard to their ecotoxicological effects on algae, daphnids and fish embryos. NanoImpact, 2018, 9, 52-60.	2.4	36
21	A case study to optimise and validate the brine shrimp Artemia franciscana immobilisation assay with silver nanoparticles: The role of harmonisation. Environmental Pollution, 2016, 213, 173-183.	3.7	35
22	Effect propagation after silver nanoparticle exposure in zebrafish (Danio rerio) embryos: a correlation to internal concentration and distribution patterns. Environmental Science: Nano, 2015, 2, 603-614.	2.2	27
23	Natural water as the test medium for Ag and CuO nanoparticle hazard evaluation: An interlaboratory case study. Environmental Pollution, 2016, 216, 689-699.	3.7	27
24	Comparative evaluation of particle properties, formation of reactive oxygen species and genotoxic potential of tungsten carbide based nanoparticles in vitro. Journal of Hazardous Materials, 2012, 227-228, 418-426.	6.5	25
25	Physical-chemical characterization of tungsten carbide nanoparticles as a basis for toxicological investigations. Nanotoxicology, 2010, 4, 196-206.	1.6	24
26	Closing gaps for environmental risk screening of engineered nanomaterials. NanoImpact, 2019, 15, 100173.	2.4	22
27	The oxidized state of the nanocomposite Carbo-Iron \hat{A}^{\otimes} causes no adverse effects on growth, survival and differential gene expression in zebrafish. Science of the Total Environment, 2015, 530-531, 198-208.	3.9	16
28	The DaNa2.0 Knowledge Base Nanomaterials—An Important Measure Accompanying Nanomaterials Development. Nanomaterials, 2018, 8, 204.	1.9	16
29	Environmental impacts of nanomaterials: providing comprehensive information on exposure, transport and ecotoxicity - the project DaNa2.0. Environmental Sciences Europe, 2014, 26, .	2.6	15
30	Towards sensible toxicity testing for nanomaterials: proposal for the specification of test design. Science and Technology of Advanced Materials, 2015, 16, 065006.	2.8	15
31	Environmental risk or benefit? Comprehensive risk assessment of groundwater treated with nano FeO-based Carbo-Iron®. Science of the Total Environment, 2019, 677, 156-166.	3.9	14
32	Attachment Efficiency of Nanomaterials to Algae as an Important Criterion for Ecotoxicity and Grouping. Nanomaterials, 2020, 10, 1021.	1,9	14
33	Environmental benefits and concerns on safety: communicating latest results on nanotechnology safety researchâ€"the project DaNa2.0. Environmental Science and Pollution Research, 2017, 24, 11120-11125.	2.7	11
34	Inflammation does not precede or accompany the induction of preneoplastic lesions in the colon of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine-fed rats. Archives of Toxicology, 2009, 83, 763-768.	1.9	10
35	Environmental Impacts of Engineered Nanomaterialsâ€"Imbalances in the Safety Assessment of Selected Nanomaterials. Materials, 2018, 11, 1444.	1.3	8
36	Evaluation of Health Risks of Nanoparticles – A Contribution to a Sustainable Development of Nanotechnology. Solid State Phenomena, 2009, 151, 183-189.	0.3	4

#	Article	IF	CITATIONS
37	From the air to the water phase: implication for toxicity testing of combustion-derived particles. Biomass Conversion and Biorefinery, 2019, 9, 213-225.	2.9	3
38	Testing Nanomaterial Toxicity in Unicellular Eukaryotic Algae and Fish Cell Lines. Methods in Molecular Biology, 2013, 1028, 165-195.	0.4	3
39	Tungsten carbide and tungsten carbide cobalt nanoparticle toxicity: The role of cellular particle uptake, leached ions and cobalt bioavailability. Toxicology Letters, 2009, 189, S185.	0.4	2
40	DaNa 2.0 – verlĀ⊠sliche Informationen zur Sicherheit von marktÃ1⁄4blichen Nanomaterialien. Chemie-Ingenieur-Technik, 2017, 89, 232-238.	0.4	2