Yasuharu Satoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/800072/publications.pdf

Version: 2024-02-01

236925 276875 1,791 53 25 41 h-index citations g-index papers 53 53 53 1737 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Biosynthetic Gene Cluster of Linaridin Peptides Contains Epimerase Gene. ChemBioChem, 2022, 23, .	2.6	10
2	High Production of Ergothioneine in <i>Escherichia coli</i> using the Sulfoxide Synthase from <i>Methylobacterium</i> strains. Journal of Agricultural and Food Chemistry, 2020, 68, 6390-6394.	5.2	16
3	Off-Loading Mechanism of Products in Polyunsaturated Fatty Acid Synthases. ACS Chemical Biology, 2020, 15, 651-656.	3.4	11
4	Recent advances in functional analysis of polyunsaturated fatty acid synthases. Current Opinion in Chemical Biology, 2020, 59, 30-36.	6.1	14
5	Subtle Control of Carbon Chain Length in Polyunsaturated Fatty Acid Synthases. ACS Chemical Biology, 2019, 14, 2553-2556.	3.4	9
6	Control Mechanism for Carbonâ€Chain Length in Polyunsaturated Fattyâ€Acid Synthases. Angewandte Chemie, 2019, 131, 6677-6682.	2.0	2
7	Control Mechanism for Carbonâ€Chain Length in Polyunsaturated Fattyâ€Acid Synthases. Angewandte Chemie - International Edition, 2019, 58, 6605-6610.	13.8	31
8	Amino Acid Residues Recognizing Isomeric Glutamate Substrates in UDP- <i>N</i> -acetylmuramic acid- <scp>I</scp> -alanine-glutamate Synthetases. ACS Chemical Biology, 2019, 14, 975-978.	3.4	5
9	Gram-scale fermentative production of ergothioneine driven by overproduction of cysteine in Escherichia coli. Scientific Reports, 2019, 9, 1895.	3.3	44
10	Control Mechanism for <i>cis</i> Doubleâ€Bond Formation by Polyunsaturated Fattyâ€Acid Synthases. Angewandte Chemie - International Edition, 2019, 58, 2326-2330.	13.8	33
11	Control Mechanism for <i>cis</i> Doubleâ€Bond Formation by Polyunsaturated Fattyâ€Acid Synthases. Angewandte Chemie, 2019, 131, 2348-2352.	2.0	3
12	Ergothioneine production with <i>Aspergillus oryzae</i> Bioscience, Biotechnology and Biochemistry, 2019, 83, 181-184.	1.3	40
13	Heterologous and High Production of Ergothioneine in <i>Escherichia coli</i> Iournal of Agricultural and Food Chemistry, 2018, 66, 1191-1196.	5.2	41
14	<i>N</i> -Phenylacetylation and Nonribosomal Peptide Synthetases with Substrate Promiscuity for Biosynthesis of Heptapeptide Variants, JBIR-78 and JBIR-95. ACS Chemical Biology, 2017, 12, 1813-1819.	3.4	11
15	A Glycopeptidyl-Glutamate Epimerase for Bacterial Peptidoglycan Biosynthesis. Journal of the American Chemical Society, 2017, 139, 4243-4245.	13.7	11
16	Exploring Peptide Ligase Orthologs in Actinobacteria—Discovery of Pseudopeptide Natural Products, Ketomemicins. ACS Chemical Biology, 2016, 11, 1686-1692.	3.4	20
17	Advanced functionalization of polyhydroxyalkanoate via the UV-initiated thiol-ene click reaction. Applied Microbiology and Biotechnology, 2016, 100, 4375-4383.	3.6	8
18	Enhanced production of polyunsaturated fatty acids by enzyme engineering of tandem acyl carrier proteins. Scientific Reports, 2016, 6, 35441.	3.3	51

#	Article	IF	CITATIONS
19	InÂvitro synthesis of polyhydroxyalkanoates using thermostable acetyl-CoA synthetase, CoA transferase, and PHA synthase from thermotorelant bacteria. Journal of Bioscience and Bioengineering, 2016, 122, 660-665.	2.2	25
20	Ergothioneine protects Streptomyces coelicolor A3(2) from oxidative stresses. Journal of Bioscience and Bioengineering, 2015, 120, 294-298.	2.2	28
21	A peptide ligase and the ribosome cooperate to synthesize the peptide pheganomycin. Nature Chemical Biology, 2015, 11, 71-76.	8.0	53
22	New gene responsible for para-aminobenzoate biosynthesis. Journal of Bioscience and Bioengineering, 2014, 117, 178-183.	2.2	12
23	Polyhydroxyalkanoate production by a novel bacterium Massilia sp. UMI-21 isolated from seaweed, and molecular cloning of its polyhydroxyalkanoate synthase gene. Journal of Bioscience and Bioengineering, 2014, 118, 514-519.	2.2	27
24	Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
25	Engineering of l-tyrosine oxidation in Escherichia coli and microbial production of hydroxytyrosol. Metabolic Engineering, 2012, 14, 603-610.	7.0	74
26	Engineering of a Tyrosol-Producing Pathway, Utilizing Simple Sugar and the Central Metabolic Tyrosine, in Escherichia coli. Journal of Agricultural and Food Chemistry, 2012, 60, 979-984.	5.2	49
27	Cellulose production by Enterobacter sp. CJF-002 and identification of genes for cellulose biosynthesis. Cellulose, 2012, 19, 1989-2001.	4.9	35
28	In vitro synthesis of polyhydroxyalkanoate (PHA) incorporating lactate (LA) with a block sequence by using a newly engineered thermostable PHA synthase from Pseudomonas sp. SG4502 with acquired LA-polymerizing activity. Applied Microbiology and Biotechnology, 2012, 94, 365-376.	3.6	27
29	Isolation of a thermotolerant bacterium producing medium-chain-length polyhydroxyalkanoate. Journal of Applied Microbiology, 2011, 111, 811-817.	3.1	23
30	Chemo-enzymatic synthesis of polyhydroxyalkanoate (PHA) incorporating 2-hydroxybutyrate by wild-type class I PHA synthase from Ralstonia eutropha. Applied Microbiology and Biotechnology, 2011, 92, 509-517.	3.6	42
31	Unusual change in molecular weight of polyhydroxyalkanoate (PHA) during cultivation of PHA-accumulating Escherichia coli. Polymer Degradation and Stability, 2010, 95, 2250-2254.	5.8	24
32	Development of a New Conversion Process Consisting of Hydrothermal Treatment and Catalytic Reaction Using ZrO2–FeO X Catalyst to Convert Fermentation Residue into Useful Chemicals. Topics in Catalysis, 2010, 53, 654-658.	2.8	20
33	Structure of bacterial cellulose synthase subunit D octamer with four inner passageways. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17957-17961.	7.1	118
34	Chemo-enzymatic synthesis of polyhydroxyalkanoate by an improved two-phase reaction system (TPRS). Journal of Bioscience and Bioengineering, 2009, 108, 517-523.	2.2	15
35	Kinetic Analysis of Engineered Polyhydroxyalkanoate Synthases with Broad Substrate Specificity. Polymer Journal, 2009, 41, 237-240.	2.7	14
36	Chemo-Enzymatic Synthesis of Poly(lactate- <i>>co</i> -(3-hydroxybutyrate)) by a Lactate-Polymerizing Enzyme. Macromolecules, 2009, 42, 1985-1989.	4.8	40

#	Article	IF	Citations
37	Regulation of endoglucanase gene (cmcax) expression in Acetobacter xylinum. Journal of Bioscience and Bioengineering, 2008, 106, 88-94.	2.2	25
38	Purification, Crystallization and Preliminary X-Ray Studies of AxCesD Required for Efficient Cellulose Biosynthesis in Acetobacter xylinum. Protein and Peptide Letters, 2008, 15, 115-117.	0.9	4
39	A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17323-17327.	7.1	261
40	In vitro growth and differentiated activities of human periodontal ligament fibroblasts cultured on salmon collagen gel. Journal of Biomedical Materials Research - Part A, 2007, 82A, 395-402.	4.0	38
41	Activities of MC3T3-E1 cells cultured on \hat{I}^3 -irradiated salmon atelocollagen scaffold. Journal of Bioscience and Bioengineering, 2006, 101, 511-514.	2.2	8
42	Structural characterization of the Acetobacter xylinum endo-β-1,4-glucanase CMCax required for cellulose biosynthesis. Proteins: Structure, Function and Bioinformatics, 2006, 64, 1069-1077.	2.6	47
43	Enzymatic synthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with CoA recycling using polyhydroxyalkanoate synthase and acyl-CoA synthetase. Journal of Bioscience and Bioengineering, 2005, 99, 508-511.	2.2	20
44	Crystallization and preliminary crystallographic analysis of the cellulose biosynthesis-related protein CMCax fromAcetobacter xylinum. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 252-254.	0.7	5
45	A method of cell-sheet preparation using collagenase digestion of salmon atelocollagen fibrillar gel. Journal of Bioscience and Bioengineering, 2004, 98, 493-496.	2.2	29
46	Chemoenzymatic Synthesis of Poly(3-hydroxybutyrate) in a Water-Organic Solvent Two-Phase System. Macromolecules, 2004, 37, 4544-4546.	4.8	17
47	Enzyme-catalyzed poly(3-hydroxybutyrate) synthesis from acetate with CoA recycling and NADPH regeneration in Vitro. Journal of Bioscience and Bioengineering, 2003, 95, 335-341.	2.2	51
48	Isolation and characterization of Bacillus sp. INT005 accumulating polyhydroxyalkanoate (PHA) from gas field soil. Journal of Bioscience and Bioengineering, 2003, 95, 77-81.	2.2	89
49	Synthesis of Poly(3-hydroxybutyrate) by Immobilized Poly(3-hydroxybutyrate) Synthase. Polymer Journal, 2003, 35, 407-410.	2.7	5
50	Isolation and Characterization of Bacillus sp. INT005 Accumulating Polyhydroxyalkanoate (PHA) from Gas Field Soil Journal of Bioscience and Bioengineering, 2003, 95, 77-81.	2.2	11
51	Polyhydroxyalkanoate synthase from Bacillus sp. INTO05 is composed of PhaC and PhaR. Journal of Bioscience and Bioengineering, 2002, 94, 343-350.	2.2	41
52	Polyhydroxyalkanoate Synthase from Bacillus sp. INTO05 Is Composed of PhaC and PhaR. Journal of Bioscience and Bioengineering, 2002, 94, 343-350.	2.2	21
53	A novel ATP regeneration system using polyphosphate-AMP phosphotransferase and polyphosphate kinase. Journal of Bioscience and Bioengineering, 2001, 91, 557-563.	2.2	62