Wu-Rong Jian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8000566/publications.pdf Version: 2024-02-01

WU-RONG LIAN

#	Article	IF	CITATIONS
1	Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi. Acta Materialia, 2020, 199, 352-369.	3.8	213
2	Role of local chemical fluctuations in the shock dynamics of medium entropy alloy CoCrNi. Acta Materialia, 2021, 221, 117380.	3.8	63
3	Local slip resistances in equal-molar MoNbTi multi-principal element alloy. Acta Materialia, 2021, 202, 68-79.	3.8	50
4	Atomistic calculations of the generalized stacking fault energies in two refractory multi-principal element alloys. Intermetallics, 2020, 124, 106844.	1.8	40
5	Generalized stacking fault energies and Peierls stresses in refractory body-centered cubic metals from machine learning-based interatomic potentials. Computational Materials Science, 2021, 192, 110364.	1.4	34
6	Shock-induced amorphization in medium entropy alloy CoCrNi. Scripta Materialia, 2022, 209, 114379.	2.6	33
7	Shock-induced melting of honeycomb-shaped Cu nanofoams: Effects of porosity. Journal of Applied Physics, 2015, 118, .	1.1	30
8	Atomistic simulations of dynamics of an edge dislocation and its interaction with a void in copper: a comparative study. Modelling and Simulation in Materials Science and Engineering, 2020, 28, 045004.	0.8	30
9	Improved ductility of Cu ₆₄ Zr ₃₆ metallic glass/Cu nanocomposites via phase and grain boundaries. Nanotechnology, 2016, 27, 175701.	1.3	29
10	Spall damage of a Ta particle-reinforced metallic glass matrix composite under high strain rate loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 711, 284-292.	2.6	28
11	Strengthening effects of encapsulating graphene in SiC particle-reinforced Al-matrix composites. Computational Materials Science, 2018, 153, 275-281.	1.4	28
12	Tensile and nanoindentation deformation of amorphous/crystalline nanolaminates: Effects of layer thickness and interface type. Computational Materials Science, 2018, 154, 225-233.	1.4	28
13	Atomistic simulations of the local slip resistances in four refractory multi-principal element alloys. International Journal of Plasticity, 2022, 149, 103157.	4.1	28
14	High-velocity shock compression of SiC via molecular dynamics simulation. Computational Materials Science, 2015, 98, 297-303.	1.4	27
15	Short- and medium-range orders in Cu ₄₆ Zr ₅₄ metallic glasses under shock compression. Journal of Applied Physics, 2015, 118, 015901.	1.1	26
16	Shock response of open-cell nanoporous Cu foams: Effects of porosity and specific surface area. Journal of Applied Physics, 2015, 118, .	1.1	22
17	Deformation and spallation of shock-loaded graphene: Effects of orientation and grain boundary. Carbon, 2018, 132, 520-528.	5.4	21
18	Atomic-Scale Hidden Point-Defect Complexes Induce Ultrahigh-Irradiation Hardening in Tungsten. Nano Letters, 2021, 21, 5798-5804.	4.5	21

Wu-Rong Jian

#	Article	IF	CITATIONS
19	Tensile deformation of nanocrystalline Al-matrix composites: Effects of the SiC particle and graphene. Computational Materials Science, 2019, 156, 187-194.	1.4	20
20	Balancing strength, hardness and ductility of Cu ₆₄ Zr ₃₆ nanoglasses via embedded nanocrystals. Nanotechnology, 2018, 29, 025701.	1.3	19
21	Layer thickness effects on the strengthening and toughening mechanisms in metallic glass-graphene nanolaminates. Computational Materials Science, 2020, 177, 109536.	1.4	18
22	Role of layer thickness and dislocation distribution in confined layer slip in nanolaminated Nb. International Journal of Plasticity, 2022, 152, 103239.	4.1	17
23	On the significance of model design in atomistic calculations of the Peierls stress in Nb. Computational Materials Science, 2021, 188, 110150.	1.4	15
24	Role of local chemical fluctuations in the melting of medium entropy alloy CoCrNi. Applied Physics Letters, 2021, 119, .	1.5	13
25	Line-length-dependent dislocation glide in refractory multi-principal element alloys. Applied Physics Letters, 2022, 120, .	1.5	13
26	Irradiation-initiated plastic deformation in prestrained single-crystal copper. Nuclear Instruments & Methods in Physics Research B, 2016, 368, 60-65.	0.6	10
27	The toughening mechanism and spatial–temporal evolution of shear bands at different strain rates in Vit-1 metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 773, 138855.	2.6	9
28	Effect of interface structure on dislocation glide behavior in nanolaminates. Journal of Materials Research, 2021, 36, 2802-2815.	1.2	8
29	Strengthening and toughening mechanisms of metallic glass nanocomposites via graphene nanoplatelets. Journal of Non-Crystalline Solids, 2020, 546, 120284.	1.5	6
30	Energetically favorable dislocation/nanobubble bypass mechanism in irradiation conditions. Acta Materialia, 2022, 230, 117849.	3.8	5
31	Size-dependent vibration analysis of carbon nanotubes. Journal of Materials Research, 2019, 34, 2148-2160.	1.2	1