Sameer A Al-Bataineh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8000398/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Furanone at Subinhibitory Concentrations Enhances Staphylococcal Biofilm Formation by <i>luxS</i> Repression. Antimicrobial Agents and Chemotherapy, 2009, 53, 4159-4166.	1.4	93
2	Combination of iCVD and Porous Silicon for the Development of a Controlled Drug Delivery System. ACS Applied Materials & Interfaces, 2012, 4, 3566-3574.	4.0	75
3	Fabrication and Characterization of a Porous Silicon Drug Delivery System with an Initiated Chemical Vapor Deposition Temperature-Responsive Coating. Langmuir, 2016, 32, 301-308.	1.6	53
4	Controlling the Spatial Distribution of Polymer Surface Treatment Using Atmosphericâ€Pressure Microplasma Jets. Plasma Processes and Polymers, 2011, 8, 38-50.	1.6	51
5	Microplasma patterning of bonded microchannels using high-precision "injected―electrodes. Lab on A Chip, 2011, 11, 541-544.	3.1	50
6	XPS characterization of the surface immobilization of antibacterial furanones. Surface Science, 2006, 600, 952-962.	0.8	48
7	Covalent Immobilization of Antibacterial Furanones via Photochemical Activation of Perfluorophenylazide. Langmuir, 2009, 25, 7432-7437.	1.6	44
8	Engineering of high-performance potassium-ion capacitors using polyaniline-derived N-doped carbon nanotubes anode and laser scribed graphene oxide cathode. Applied Materials Today, 2019, 16, 425-434.	2.3	43
9	On the Effect of Monomer Chemistry on Growth Mechanisms of Nonfouling PEG-like Plasma Polymers. Langmuir, 2013, 29, 2595-2601.	1.6	41
10	Studying the cytolytic activity of gas plasma with self-signalling phospholipid vesicles dispersed within a gelatin matrix. Journal Physics D: Applied Physics, 2013, 46, 185401.	1.3	36
11	"Thunderstruck― Plasma-Polymer-Coated Porous Silicon Microparticles As a Controlled Drug Delivery System. ACS Applied Materials & Interfaces, 2016, 8, 4467-4476.	4.0	33
12	Surface engineering of porous silicon to optimise therapeutic antibody loading and release. Journal of Materials Chemistry B, 2015, 3, 4123-4133.	2.9	30
13	Rapid radiation degradation in the XPS analysis of antibacterial coatings of brominated furanones. Surface and Interface Analysis, 2006, 38, 1512-1518.	0.8	25
14	On the effects of atmospheric-pressure microplasma array treatment on polymer and biological materials. RSC Advances, 2013, 3, 13437.	1.7	24
15	Fabrication and Operation of a Microcavity Plasma Array Device for Microscale Surface Modification. Plasma Processes and Polymers, 2012, 9, 638-646.	1.6	23
16	Microplasma arrays: a new approach for maskless and localized patterning of materials surfaces. RSC Advances, 2012, 2, 12007.	1.7	20
17	Plasma Polymer and Biomolecule Modification of 3D Scaffolds for Tissue Engineering. Plasma Processes and Polymers, 2016, 13, 678-689.	1.6	20
18	The use of a micro-cavity discharge array at atmospheric pressure to investigate the spatial modification of polymer surfaces. Surface and Coatings Technology, 2010, 204, 2279-2288.	2.2	19

#	Article	IF	CITATIONS
19	Design of a Microplasma Device for Spatially Localised Plasma Polymerisation. Plasma Processes and Polymers, 2011, 8, 695-700.	1.6	19
20	TOF-SIMS and Principal Component Analysis Characterization of the Multilayer Surface Grafting of Small Molecules:  Antibacterial Furanones. Analytical Chemistry, 2008, 80, 430-436.	3.2	18
21	Atmospheric Pressure Dielectric Barrier Discharges for the Deposition of Organic Plasma Polymer Coatings for Biomedical Application. Plasma Chemistry and Plasma Processing, 2021, 41, 47-83.	1.1	18
22	Attachment of Poly(<scp>l</scp> -lactide) Nanoparticles to Plasma-Treated Non-Woven Polymer Fabrics Using Inkjet Printing. Macromolecular Bioscience, 2015, 15, 1274-1282.	2.1	12
23	Deposition of 2â€oxazolineâ€based plasma polymer coatings using atmospheric pressure helium plasma jet. Plasma Processes and Polymers, 2019, 16, 1900104.	1.6	12
24	Continuous-Wave RF Plasma Polymerization of Furfuryl Methacrylate: Correlation Between Plasma and Surface Chemistry. Plasma Processes and Polymers, 2017, 14, 1600054.	1.6	9
25	Surface protein gradients generated in sealed microchannels using spatially varying helium microplasma. Biomicrofluidics, 2015, 9, 014124.	1.2	8
26	ToF-SIMS analysis of poly(l-lysine)-graft-poly(2-methyl-2-oxazoline) ultrathin adlayers. Analytical and Bioanalytical Chemistry, 2014, 406, 1509-1517.	1.9	7
27	Protein Patterning on Microplasma-Activated PEO-Like Coatings. Plasma Processes and Polymers, 2014, 11, 263-268.	1.6	6
28	Microplasma jet treatment of bovine serum albumin coatings for controlling enzyme and cell attachment. European Physical Journal: Special Topics, 2017, 226, 2873-2885.	1.2	3
29	To be a radical or not to be one? The fate of the stable nitroxide radical TEMPO [(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl] undergoing plasma polymerization into thin-film coatings. Biointerphases, 2020, 15, 031015.	0.6	3
30	Integration of microplasma and microfluidic technologies for localised microchannel surface modification. Proceedings of SPIE, 2011, , .	0.8	2
31	Electrical and optical properties of a gradient microplasma for microfluidic chips. Plasma Processes and Polymers, 2017, 14, 1600194.	1.6	2
32	Chemical and biomolecule patterning on 2D surfaces using atmospheric pressure microcavity plasma array devices. Proceedings of SPIE, 2011, , .	0.8	1
33	Microplasma Array Patterning of Reactive Oxygen and Nitrogen Species onto Polystyrene. Frontiers in Physics, 2017, 5, .	1.0	0