J Carlos Abanades

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8000353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrated Calcium Looping System with Circulating Fluidized Bed Reactors for Low CO2 Emission Cement Plants. International Journal of Greenhouse Gas Control, 2022, 114, 103555.	4.6	12
2	Carbonation Kinetics of Ca(OH) ₂ Under Conditions of Entrained Reactors to Capture CO ₂ . Industrial & Engineering Chemistry Research, 2022, 61, 3272-3277.	3.7	8
3	Experimental Investigation of Sulfation Phenomena in Calcium Looping Systems Integrated in Cement Plants. Industrial & Engineering Chemistry Research, 2022, 61, 4561-4566.	3.7	0
4	Investigation of the dynamic evolution of the CO2 carrying capacity of solids with time in La Pereda 1.7 MWth calcium looping pilot plant. International Journal of Greenhouse Gas Control, 2020, 92, 102856.	4.6	9
5	Advanced Packed-Bed Ca-Cu Looping Process for the CO2 Capture From Steel Mill Off-Gases. Frontiers in Energy Research, 2020, 8, .	2.3	10
6	Thermal Integration of a Flexible Calcium Looping CO ₂ Capture System in an Existing Back-Up Coal Power Plant. ACS Omega, 2020, 5, 4844-4852.	3.5	10
7	An air CO ₂ capture system based on the passive carbonation of large Ca(OH) ₂ structures. Sustainable Energy and Fuels, 2020, 4, 3409-3417.	4.9	30
8	A novel air reactor concept for chemical looping combustion systems operated at high pressure. Chemical Engineering Journal, 2020, 390, 124507.	12.7	9
9	Investigation of the Segregation of Binary Mixtures with Iron-Based Particles in a Bubbling Fluidized Bed. ACS Omega, 2019, 4, 9065-9073.	3.5	5
10	Kinetic Study of Belite Formation in Cement Raw Meals Used in the Calcium Looping CO ₂ Capture Process. Industrial & Engineering Chemistry Research, 2019, 58, 5445-5454.	3.7	11
11	Recent progress of the Ca-Cu technology for decarbonisation of power plants and carbon intensive industries. International Journal of Greenhouse Gas Control, 2019, 85, 71-85.	4.6	22
12	A sequential approach for the economic evaluation of new CO2 capture technologies for power plants. International Journal of Greenhouse Gas Control, 2019, 84, 219-231.	4.6	27
13	Calcination kinetics of cement raw meals under various CO ₂ concentrations. Reaction Chemistry and Engineering, 2019, 4, 2129-2140.	3.7	15
14	Experimental testing and model validation of the calcination of calcium carbonate by the reduction of copper oxide with CH4. Chemical Engineering Science, 2019, 193, 120-132.	3.8	8
15	Study of the calcination of CaCO3 by means of a Cu/CuO chemical loop using methane as fuel gas. Catalysis Today, 2019, 333, 176-181.	4.4	12
16	CO2 capture in existing power plants using second generation Ca-Looping systems firing biomass in the calciner. Journal of Cleaner Production, 2018, 187, 638-649.	9.3	26
17	Characterization of a Marl-Type Cement Raw Meal as CO2 Sorbent for Calcium Looping. ACS Omega, 2018, 3, 15229-15234.	3.5	6
18	Integration of a fluidised bed Ca–Cu chemical looping process in a steel mill. Energy, 2018, 163, 570-584.	8.8	32

#	Article	IF	CITATIONS
19	Carbonation of Fine CaO Particles in a Drop Tube Reactor. Industrial & Engineering Chemistry Research, 2018, 57, 13372-13380.	3.7	20
20	Determination of the solid concentration in a binary mixture from pressure drop measurements. Powder Technology, 2018, 338, 608-613.	4.2	11
21	Effect of the Carbonation Temperature on the CO ₂ Carrying Capacity of CaO. Industrial & Engineering Chemistry Research, 2018, 57, 12595-12599.	3.7	56
22	Calcium looping performance under extreme oxy-fuel combustion conditions in the calciner. Fuel, 2018, 222, 711-717.	6.4	44
23	Measuring attrition properties of calcium looping materials in a 30†kW pilot plant. Powder Technology, 2018, 336, 273-281.	4.2	21
24	Continuous CaO/Ca(OH) ₂ Fluidized Bed Reactor for Energy Storage: First Experimental Results and Reactor Model Validation. Industrial & Engineering Chemistry Research, 2017, 56, 844-852.	3.7	46
25	CO ₂ Capture by Calcium Looping at Relevant Conditions for Cement Plants: Experimental Testing in a 30 kW _{th} Pilot Plant. Industrial & Engineering Chemistry Research, 2017, 56, 2634-2640.	3.7	53
26	Overview of the Ca–Cu looping process for hydrogen production and/or power generation. Current Opinion in Chemical Engineering, 2017, 17, 1-8.	7.8	34
27	Evolution of the CO2 carrying capacity of CaO particles in a large calcium looping pilot plant. International Journal of Greenhouse Gas Control, 2017, 62, 69-75.	4.6	23
28	Study of a Cu-CuO chemical loop for the calcination of CaCO3 in a fixed bed reactor. Chemical Engineering Journal, 2017, 325, 208-220.	12.7	29
29	Conceptual design of a Ca–Cu chemical looping process for hydrogen production in integrated steelworks. International Journal of Hydrogen Energy, 2017, 42, 11023-11037.	7.1	33
30	Optimized design and operation strategy of a Ca Cu chemical looping process for hydrogen production. Chemical Engineering Science, 2017, 166, 144-160.	3.8	34
31	Modelling a Calciner with High Inlet Oxygen Concentration for a Calcium Looping Process. Energy Procedia, 2017, 114, 242-249.	1.8	9
32	Proof of concept of the CaO/Ca(OH)2 reaction in a continuous heat-exchanger BFB reactor for thermochemical heat storage in CSP plants. AIP Conference Proceedings, 2017, , .	0.4	7
33	Calcium looping CO ₂ capture system for back-up power plants. Energy and Environmental Science, 2017, 10, 1994-2004.	30.8	62
34	Integration of Ca-Looping Systems for CO2 Capture in Cement Plants. Energy Procedia, 2017, 114, 6206-6214.	1.8	31
35	Operating Experience in la Pereda 1.7 MWth Calcium Looping Pilot. Energy Procedia, 2017, 114, 149-157.	1.8	18
36	Screening CO2 Capture Test for Cement Plants Using a Lab Scale Calcium Looping Pilot Facility. Energy Procedia, 2017, 114, 53-56.	1.8	3

#	Article	IF	CITATIONS
37	Sorption enhanced reforming of methane combined with an iron oxide chemical loop for the production of hydrogen with CO2 capture: Conceptual design and operation strategy. Applied Thermal Engineering, 2017, 125, 811-822.	6.0	17
38	On the climate change mitigation potential of CO ₂ conversion to fuels. Energy and Environmental Science, 2017, 10, 2491-2499.	30.8	225
39	CO ₂ Carrying Capacities of Cement Raw Meals in Calcium Looping Systems. Energy & Fuels, 2017, 31, 13955-13962.	5.1	14
40	Experimental investigation and model validation of a CaO/Ca(OH)2 fluidized bed reactor for thermochemical energy storage applications. Chemical Engineering Journal, 2017, 313, 1194-1205.	12.7	81
41	Reactor Design for Sorption-Enhanced Reforming Using Ca Cu Chemical Loops. Advances in Chemical Engineering, 2017, 51, 207-260.	0.9	4
42	Enhancement of a CaO/Ca(OH)2 based material for thermochemical energy storage. Solar Energy, 2016, 135, 800-809.	6.1	73
43	Experimental testing of a sorbent reactivation process in La Pereda 1.7 MWth calcium looping pilot plant. International Journal of Greenhouse Gas Control, 2016, 50, 14-22.	4.6	40
44	Analysis of a double calcium loop process configuration for CO2 capture in cement plants. Journal of Cleaner Production, 2016, 117, 110-121.	9.3	47
45	Investigation of a Fixed-Bed Reactor for the Calcination of CaCO ₃ by the Simultaneous Reduction of CuO with a Fuel Gas. Industrial & Engineering Chemistry Research, 2016, 55, 5128-5132.	3.7	33
46	CO2 capture from the calcination of CaCO3 using iron oxide asÂheatÂcarrier. Journal of Cleaner Production, 2016, 112, 1211-1217.	9.3	46
47	Calcium looping reactor design for fluidized-bed systems. , 2015, , 107-138.		1
48	Emerging CO2 capture systems. International Journal of Greenhouse Gas Control, 2015, 40, 126-166.	4.6	352
49	Special Issue commemorating the 10th year anniversary of the publication of the Intergovernmental Panel on Climate Change Special Report on CO2 Capture and Storage. International Journal of Greenhouse Gas Control, 2015, 40, 1-5.	4.6	42
50	Composite Material for Thermochemical Energy Storage Using CaO/Ca(OH) ₂ . Industrial & Engineering Chemistry Research, 2015, 54, 9314-9327.	3.7	41
51	Sulfation Rates of Particles in Calcium Looping Reactors. Chemical Engineering and Technology, 2014, 37, 15-19.	1.5	13
52	Process design of a hydrogen production plant from natural gas with CO2 capture based on a novel Ca/Cu chemical loop. Applied Energy, 2014, 114, 192-208.	10.1	84
53	Carbon capture and storage update. Energy and Environmental Science, 2014, 7, 130-189.	30.8	1,765
54	Sulfation Performance of CaO Purges Derived from Calcium Looping CO ₂ Capture Systems. Energy & Fuels, 2014, 28, 1325-1330.	5.1	11

#	Article	IF	CITATIONS
55	Conceptual design of a Ni-based chemical looping combustion process using fixed-beds. Applied Energy, 2014, 135, 309-319.	10.1	39
56	Biomass combustion with in situ CO 2 capture by CaO in a 300 kW th circulating fluidized bed facility. International Journal of Greenhouse Gas Control, 2014, 29, 142-152.	4.6	44
57	Oxy-fired fluidized bed combustors with a flexible power output using circulating solids for thermal energy storage. Applied Energy, 2014, 132, 127-136.	10.1	28
58	Determination of CaO Carbonation Kinetics under Recarbonation Conditions. Energy & Fuels, 2014, 28, 4033-4042.	5.1	58
59	Kinetics of the CaO/Ca(OH) ₂ Hydration/Dehydration Reaction for Thermochemical Energy Storage Applications. Industrial & Engineering Chemistry Research, 2014, 53, 12594-12601.	3.7	133
60	Design of a Novel Fluidized Bed Reactor To Enhance Sorbent Performance in CO ₂ Capture Systems Using CaO. Industrial & Engineering Chemistry Research, 2014, 53, 10059-10071.	3.7	33
61	Conceptual process design of a CaO/Ca(OH) 2 thermochemical energy storage system using fluidized bed reactors. Applied Thermal Engineering, 2014, 73, 1087-1094.	6.0	82
62	Undesired effects in the determination of CO2 carrying capacities of CaO during TG testing. Fuel, 2014, 127, 52-61.	6.4	62
63	Modeling of Cu oxidation in an adiabatic fixed-bed reactor with N2 recycling. Applied Energy, 2014, 113, 1945-1951.	10.1	26
64	Process and Cost Analysis of a Biomass Power Plant with in Situ Calcium Looping CO ₂ Capture Process. Industrial & Engineering Chemistry Research, 2014, 53, 10721-10733.	3.7	18
65	Calcium Looping with Enhanced Sorbent Performance: Experimental Testing in A Large Pilot Plant. Energy Procedia, 2014, 63, 2060-2069.	1.8	11
66	Investigation of SO ₂ Capture in a Circulating Fluidized Bed Carbonator of a Ca Looping Cycle. Industrial & Engineering Chemistry Research, 2013, 52, 2700-2706.	3.7	16
67	Demonstration of steady state CO2 capture in a 1.7MWth calcium looping pilot. International Journal of Greenhouse Gas Control, 2013, 18, 237-245.	4.6	279
68	The impact of calcium sulfate and inert solids accumulation in post-combustion calcium looping systems. Fuel, 2013, 109, 184-190.	6.4	30
69	Testing postcombustion CO2 capture with CaO in a 1.7 MWt pilot facility. Energy Procedia, 2013, 37, 1-8.	1.8	55
70	Calcium looping for CO 2 capture in combustion systems. , 2013, , 931-970.		4
71	Design of a hydrogen production process for power generation based on a Ca-Cu chemical loop. Energy Procedia, 2013, 37, 626-634.	1.8	10
72	Modelling the continuous calcination of CaCO3 in a Ca-looping system. Chemical Engineering Journal, 2013, 215-216, 174-181.	12.7	68

5

#	Article	IF	CITATIONS
73	Modeling of Cu oxidation in adiabatic fixed-bed reactor with N2 recycling in a Ca/Cu chemical loop. Chemical Engineering Journal, 2013, 232, 442-452.	12.7	29
74	Integrated combined cycle from natural gas with CO ₂ capture using a Ca–Cu chemical loop. AICHE Journal, 2013, 59, 2780-2794.	3.6	38
75	Reduction Kinetics of a High Load Cu-based Pellet Suitable for Ca/Cu Chemical Loops. Industrial & Engineering Chemistry Research, 2013, 52, 1481-1490.	3.7	35
76	Modeling of sorption enhanced steam methane reforming in an adiabatic fixed bed reactor. Chemical Engineering Science, 2012, 84, 1-11.	3.8	86
77	Modeling of sorption enhanced steam methane reforming—Part II: Simulation within a novel Ca/Cu chemical loop process for hydrogen production. Chemical Engineering Science, 2012, 84, 12-20.	3.8	65
78	The Effect of Steam on the Fast Carbonation Reaction Rates of CaO. Industrial & Engineering Chemistry Research, 2012, 51, 2478-2482.	3.7	71
79	Kinetics of Calcination of Partially Carbonated Particles in a Ca-Looping System for CO ₂ Capture. Energy & Fuels, 2012, 26, 1432-1440.	5.1	126
80	Modeling the solids circulation rates and solids inventories of an interconnected circulating fluidized bed reactor system for CO2 capture by calcium looping. Chemical Engineering Journal, 2012, 198-199, 228-235.	12.7	20
81	Conceptual design of a hydrogen production process from natural gas with CO2 capture using a Ca–Cu chemical loop. International Journal of Greenhouse Gas Control, 2012, 6, 126-141.	4.6	114
82	CO ₂ Capture from Cement Plants Using Oxyfired Precalcination and/or Calcium Looping. Environmental Science & Technology, 2012, 46, 2460-2466.	10.0	94
83	Post-combustion calcium looping process with a highly stable sorbent activity by recarbonation. Energy and Environmental Science, 2012, 5, 7353.	30.8	92
84	Sulfation rates of cycled CaO particles in the carbonator of a Caâ€looping cycle for postcombustion CO ₂ capture. AICHE Journal, 2012, 58, 2262-2269.	3.6	27
85	Evaluation of CO ₂ Carrying Capacity of Reactivated CaO by Hydration. Energy & Fuels, 2011, 25, 1294-1301.	5.1	62
86	Biomass Combustion with in Situ CO ₂ Capture with CaO. I. Process Description and Economics. Industrial & Engineering Chemistry Research, 2011, 50, 6972-6981.	3.7	18
87	Experimental Validation of the Calcium Looping CO ₂ Capture Process with Two Circulating Fluidized Bed Carbonator Reactors. Industrial & Engineering Chemistry Research, 2011, 50, 9685-9695.	3.7	155
88	Model for Self-Reactivation of Highly Sintered CaO Particles during CO ₂ Capture Looping Cycles. Energy & Fuels, 2011, 25, 1926-1930.	5.1	30
89	Biomass Combustion with in Situ CO2Capture by CaO. II. Experimental Results. Industrial & Engineering Chemistry Research, 2011, 50, 6982-6989.	3.7	23
90	Precalcination of CaCO ₃ as a Method to Stabilize CaO Performance for CO ₂ Capture from Combustion Gases. Energy & amp; Fuels, 2011, 25, 5521-5527.	5.1	19

#	Article	IF	CITATIONS
91	Analysis of a Process for Capturing the CO ₂ Resulting from the Precalcination of Limestone in a Cement Plant. Industrial & Engineering Chemistry Research, 2011, 50, 2126-2132.	3.7	28
92	Experimental investigation of a circulating fluidizedâ€bed reactor to capture CO ₂ with CaO. AICHE Journal, 2011, 57, 1356-1366.	3.6	141
93	Integration of a Ca looping system for CO ₂ capture in existing power plants. AICHE Journal, 2011, 57, 2599-2607.	3.6	78
94	An analysis of the effect of carbonation conditions on CaO deactivation curves. Chemical Engineering Journal, 2011, 167, 255-261.	12.7	95
95	Comparison of experimental results from three dual fluidized bed test facilities capturing CO2 with CaO. Energy Procedia, 2011, 4, 393-401.	1.8	69
96	Calcium looping for CO2 capture: sorbent enhancement through doping. Energy Procedia, 2011, 4, 402-409.	1.8	48
97	Capture of CO2 during low temperature biomass combustion in a fluidized bed using CaO. Process description, experimental results and economics. Energy Procedia, 2011, 4, 795-802.	1.8	9
98	Postcombustion CO2 capture with CaO. Status of the technology and next steps towards large scale demonstration. Energy Procedia, 2011, 4, 852-859.	1.8	78
99	Integration of a Ca-looping system for CO2 capture in an existing power plant. Energy Procedia, 2011, 4, 1699-1706.	1.8	34
100	Experimental validation of in situ CO2 capture with CaO during the low temperature combustion of biomass in a fluidized bed reactor. International Journal of Greenhouse Gas Control, 2011, 5, 512-520.	4.6	19
101	Conceptual design of a three fluidised beds combustion system capturing CO2 with CaO. International Journal of Greenhouse Gas Control, 2011, 5, 498-504.	4.6	53
102	Carbon dioxide capture from combustion flue gases with a calcium oxide chemical loop. Experimental results and process development. International Journal of Greenhouse Gas Control, 2010, 4, 167-173.	4.6	124
103	Average activity of CaO particles in a calcium looping system. Chemical Engineering Journal, 2010, 156, 388-394.	12.7	90
104	Sorbent attrition in a carbonation/calcination pilot plant for capturing CO2 from flue gases. Fuel, 2010, 89, 2918-2924.	6.4	71
105	Effect of sorbent hydration on the average activity of CaO in a Ca-looping system. Chemical Engineering Journal, 2010, 163, 324-330.	12.7	78
106	New CO ₂ Capture Process for Hydrogen Production Combining Ca and Cu Chemical Loops. Environmental Science & Technology, 2010, 44, 6901-6904.	10.0	148
107	Application of the random pore model to the carbonation cyclic reaction. AICHE Journal, 2009, 55, 1246-1255.	3.6	199
108	Modelling of a fluidized bed carbonator reactor to capture CO2 from a combustion flue gas. Chemical Engineering Science, 2009, 64, 883-891.	3.8	107

#	Article	IF	CITATIONS
109	Analysis of a process to capture the CO2 resulting from the pre-calcination of the limestone feed to a cement plant. Energy Procedia, 2009, 1, 141-148.	1.8	15
110	Capturing CO2 from combustion flue gases with a carbonation calcination loop. Experimental results and process development. Energy Procedia, 2009, 1, 1147-1154.	1.8	52
111	Effect of Partial Carbonation on the Cyclic CaO Carbonation Reaction. Industrial & Engineering Chemistry Research, 2009, 48, 9090-9096.	3.7	28
112	Postcombustion Capture of CO2 with CaO in a Circulating Fluidized Bed Carbonator. , 2009, , 549-554.		2
113	Reactivity of highly cycled particles of CaO in a carbonation/calcination loop. Chemical Engineering Journal, 2008, 137, 561-567.	12.7	152
114	Heat requirements in a calciner of CaCO3 integrated in a CO2 capture system using CaO. Chemical Engineering Journal, 2008, 138, 148-154.	12.7	120
115	Lime enhanced gasification of solid fuels: Examination of a process for simultaneous hydrogen production and CO2 capture. Fuel, 2008, 87, 1678-1686.	6.4	91
116	Oxyfuel carbonation/calcination cycle for low cost CO2 capture in existing power plants. Energy Conversion and Management, 2008, 49, 2809-2814.	9.2	184
117	Process for Capturing CO ₂ Arising from the Calcination of the CaCO ₃ Used in Cement Manufacture. Environmental Science & Technology, 2008, 42, 6980-6984.	10.0	69
118	Sulfation of CaO Particles in a Carbonation/Calcination Loop to Capture CO ₂ . Industrial & Engineering Chemistry Research, 2008, 47, 1630-1635.	3.7	84
119	Modeling of the Deactivation of CaO in a Carbonate Loop at High Temperatures of Calcination. Industrial & Engineering Chemistry Research, 2008, 47, 9256-9262.	3.7	64
120	CO ₂ Looping Cycle Performance of a High-Purity Limestone after Thermal Activation/Doping. Energy & Fuels, 2008, 22, 3258-3264.	5.1	100
121	NOVEL CO2 CONTROL METHOD BY MEANS OF CO2 CHEMICAL LOOPING. International Journal of Energy for A Clean Environment, 2008, 9, 91-101.	1.1	0
122	Economics of CO2Capture Using the Calcium Cycle with a Pressurized Fluidized Bed Combustor. Energy & Fuels, 2007, 21, 920-926.	5.1	184
123	Comparison of CaO-Based Synthetic CO ₂ Sorbents under Realistic Calcination Conditions. Energy & Fuels, 2007, 21, 3560-3562.	5.1	80
124	Cost Structure of a Postcombustion CO2Capture System Using CaO. Environmental Science & amp; Technology, 2007, 41, 5523-5527.	10.0	227
125	altimg= si13.gif_display= inline_overflow= scroll xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	3.8	27
126	zmins:tb="http://www.elsevier.com/xmi/common/table/dtd" xmins:sb="http://www.elsev. Chemical CO2Capture Capacity of CaO in Long Series of Carbonation/Calcination Cycles. Industrial & Engineering Chemistry Research, 2006, 45, 8846-8851.	3.7	641

#	Article	IF	CITATIONS
127	Novel Capture Processes. Oil and Gas Science and Technology, 2005, 60, 497-508.	1.4	42
128	Fluidized Bed Combustion Systems Integrating CO2Capture with CaO. Environmental Science & Technology, 2005, 39, 2861-2866.	10.0	383
129	Pore-Size and Shape Effects on the Recarbonation Performance of Calcium Oxide Submitted to Repeated Calcination/Recarbonation Cycles. Energy & amp; Fuels, 2005, 19, 270-278.	5.1	177
130	Determination of the Critical Product Layer Thickness in the Reaction of CaO with CO2. Industrial & Engineering Chemistry Research, 2005, 44, 5608-5615.	3.7	337
131	Capture of CO2 with CaO in a pilot fluidized bed carbonator experimental results and reactor model. , 2005, , 1107-1113.		1
132	Investigation of the solid flow between two fluidized beds connected by an orifice. Chemical Engineering Science, 2004, 59, 5869-5872.	3.8	6
133	Capture of CO2 from combustion gases in a fluidized bed of CaO. AICHE Journal, 2004, 50, 1614-1622.	3.6	328
134	Oxidative dehydrogenation of butane in an interconnected fluidized-bed reactor. AICHE Journal, 2004, 50, 1510-1522.	3.6	27
135	Clean and efficient use of petroleum coke for combustion and power generation. Fuel, 2004, 83, 1341-1348.	6.4	129
136	Sorbent Cost and Performance in CO2Capture Systems. Industrial & Engineering Chemistry Research, 2004, 43, 3462-3466.	3.7	290
137	Enhancement of CaO for CO2 capture in an FBC environment. Chemical Engineering Journal, 2003, 96, 187-195.	12.7	257
138	Conversion Limits in the Reaction of CO2with Lime. Energy & amp; Fuels, 2003, 17, 308-315.	5.1	650
139	Progress of Sulfation in Highly Sulfated Particles of Lime. Industrial & Engineering Chemistry Research, 2003, 42, 1840-1844.	3.7	17
140	A Simulation Study for Fluidized Bed Combustion of Petroleum Coke With CO2 Capture. , 2003, , 603.		4
141	In-Situ Capture of CO2 in a Fluidized Bed Combustor. , 2003, , 133.		19
142	Novel Combustion Cycles Incorporating Capture of CO2 with CaO. , 2003, , 181-186.		12
143	The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3. Chemical Engineering Journal, 2002, 90, 303-306.	12.7	456
144	The use of two different models to describe the axial mixing of solids in fluidised beds. Chemical Engineering Science, 2002, 57, 2791-2798.	3.8	15

#	Article	IF	CITATIONS
145	Determination of Biomass Char Combustion Reactivities for FBC Applications by a Combined Method. Industrial & Engineering Chemistry Research, 2001, 40, 4317-4323.	3.7	62
146	Modeling the Axial and Lateral Mixing of Solids in Fluidized Beds. Industrial & Engineering Chemistry Research, 2001, 40, 5656-5665.	3.7	13
147	A calibration procedure to obtain solid concentrations from digital images of bulk powders. Powder Technology, 2001, 114, 125-128.	4.2	30
148	An extended version of the countercurrent backmixing model suitable for solid mixing in two-dimensional fluidised beds. Powder Technology, 2001, 120, 113-119.	4.2	2
149	Residual activity of sorbent particles with a long residence time in a CFBC. AICHE Journal, 2000, 46, 1888-1893.	3.6	24
150	Structural changes in zinc ferrites as regenerable sorbents for hot coal gas desulfurization. Solid State Ionics, 2000, 138, 51-62.	2.7	68
151	Modeling of Carbon Combustion Efficiency in Circulating Fluidized Bed Combustors. 2. Model Validation and Simulation. Industrial & Engineering Chemistry Research, 1995, 34, 3139-3145.	3.7	0
152	A mathematical model for segregation of limestone-coal mixtures in slugging fluidised beds. Chemical Engineering Science, 1994, 49, 3943-3953.	3.8	13
153	Methods for characterization of sorbents used in fluidized bed boilersâ~†. Fuel, 1994, 73, 355-362.	6.4	32
154	Determination of coal combustion reactivities by burnout time measurements in a batch fluidized bed. Fuel, 1994, 73, 287-293.	6.4	12
155	Effect of formulation of steady-state heat balance for char particles on AFBC modelling. Fuel, 1993, 72, 1335-1342.	6.4	5
156	Modeling of lignite combustion in atmospheric fluidized bed combustors. 2. Model validation and simulation. Industrial & Engineering Chemistry Research, 1992, 31, 2296-2303.	3.7	4
157	Modeling of lignite combustion in atmospheric fluidized bed combustors. 1. Selection of submodels and sensitivity analysis. Industrial & amp; Engineering Chemistry Research, 1992, 31, 2286-2296.	3.7	14
158	Carbon efficiency in atmospheric fluidized bed combustion of lignites. Fuel, 1992, 71, 417-424.	6.4	5
159	Minimum fluidization velocities of fluidized-bed coal-combustion solids. Powder Technology, 1991, 67, 113-119.	4.2	28
160	Model of mixing—segregation for straw/sand mixtures in fluidized beds. Powder Technology, 1988, 56, 149-155.	4.2	29
161	Fluidization velocities of sand/straw binary mixtures. Powder Technology, 1987, 52, 1-6.	4.2	23