Mitko Veta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8000161/publications.pdf Version: 2024-02-01

Μιτκό Μετλ

#	Article	IF	CITATIONS
1	Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA - Journal of the American Medical Association, 2017, 318, 2199.	3.8	2,003
2	Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge. Medical Image Analysis, 2019, 54, 111-121.	7.0	182
3	Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge. IEEE Transactions on Medical Imaging, 2021, 40, 3543-3554.	5.4	168
4	A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging. Medical Image Analysis, 2021, 67, 101832.	7.0	150
5	Deep Learning Regression for Prostate Cancer Detection and Grading in Bi-Parametric MRI. IEEE Transactions on Biomedical Engineering, 2021, 68, 374-383.	2.5	77
6	Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method. PLoS ONE, 2016, 11, e0161286.	1.1	72
7	Domain-Adversarial Neural Networks toÂAddress the Appearance Variability ofÂHistopathology Images. Lecture Notes in Computer Science, 2017, , 83-91.	1.0	59
8	Deepâ€Learningâ€Based Preprocessing for Quantitative Myocardial Perfusion MRI. Journal of Magnetic Resonance Imaging, 2020, 51, 1689-1696.	1.9	52
9	Roto-translation equivariant convolutional networks: Application to histopathology image analysis. Medical Image Analysis, 2021, 68, 101849.	7.0	51
10	Automated clear cell renal carcinoma grade classification with prognostic significance. PLoS ONE, 2019, 14, e0222641.	1.1	35
11	Adversarial attack vulnerability of medical image analysis systems: Unexplored factors. Medical Image Analysis, 2021, 73, 102141.	7.0	35
12	Learning Domain-Invariant Representations of Histological Images. Frontiers in Medicine, 2019, 6, 162.	1.2	29
13	Deep learning-based grading of ductal carcinoma in situ in breast histopathology images. Laboratory Investigation, 2021, 101, 525-533.	1.7	20
14	Wholeâ€slide margin control through deep learning in Mohs micrographic surgery for basal cell carcinoma. Experimental Dermatology, 2021, 30, 733-738.	1.4	18
15	Quantifying Graft Detachment after Descemet's Membrane Endothelial Keratoplasty with Deep Convolutional Neural Networks. Translational Vision Science and Technology, 2020, 9, 48.	1.1	16
16	Deep learning assessment of breast terminal duct lobular unit involution: Towards automated prediction of breast cancer risk. PLoS ONE, 2020, 15, e0231653.	1.1	16
17	Physics-informed neural networks for myocardial perfusion MRI quantification. Medical Image Analysis, 2022, 78, 102399.	7.0	16
18	Long-term prognosis of young breast cancer patients (â‰ 4 0 years) who did not receive adjuvant systemic treatment: protocol for the PARADIGM initiative cohort study. BMJ Open, 2017, 7, e017842.	0.8	11

Μιτκο Veta

#	Article	IF	CITATIONS
19	Automated Quantitative Measures of Terminal Duct Lobular Unit Involution and Breast Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2358-2368.	1.1	11
20	Deep Learning Image Analysis of Benign Breast Disease to Identify Subsequent Risk of Breast Cancer. JNCI Cancer Spectrum, 2021, 5, pkaa119.	1.4	11
21	Domain-Adversarial Learning for Multi-Centre, Multi-Vendor, and Multi-Disease Cardiac MR Image Segmentation. Lecture Notes in Computer Science, 2021, , 228-237.	1.0	11
22	Intensity Augmentation to Improve Generalizability of Breast Segmentation Across Different MRI Scan Protocols. IEEE Transactions on Biomedical Engineering, 2021, 68, 759-770.	2.5	10
23	Corneal pachymetry by AS-OCT after Descemet's membrane endothelial keratoplasty. Scientific Reports, 2021, 11, 13976.	1.6	5
24	Inferring a third spatial dimension from 2D histological images. , 2018, , .		2
25	Editorial Computational Pathology. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 303-306.	3.9	2
26	Can automatic image analysis replace the pathologist in cardiac allograft rejection diagnosis?. European Heart Journal, 2021, 42, 2370-2372.	1.0	2
27	Radial U-Net: Improving DMEK Graft Detachment Segmentation in Radial AS-OCT Scans. Lecture Notes in Computer Science, 2021, , 72-81.	1.0	1