Lin Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7999959/publications.pdf

Version: 2024-02-01

		28242	29127
121	11,183	55	104
papers	citations	h-index	g-index
121	121	121	7458
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	A WC/WO star exploding within an expanding carbon–oxygen–neon nebula. Nature, 2022, 601, 201-204.	13.7	48
2	The ALPINE-ALMA [C <scp>ii</scp>]Âsurvey: Investigation of 10 galaxies at <i>z</i> â^¼ 4.5 with [O <scp>ii</scp>]Âand [C <scp>ii</scp>]Âline emission â^ ISM properties and [O <scp>ii</scp>]â^SER relation. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1303-1316.		
3	Mid-infrared Outbursts in Nearby Galaxies (MIRONG). II. Optical Spectroscopic Follow-up. Astrophysical Journal, Supplement Series, 2022, 258, 21.	3.0	6
4	The ALPINE-ALMA [CII] survey: The population of [CII]-undetected galaxies and their role in the <i>L</i> _[CII] -SFR relation. Astronomy and Astrophysics, 2022, 660, A14.	2.1	6
5	The Type Icn SN 2021csp: Implications for the Origins of the Fastest Supernovae and the Fates of Wolf–Rayet Stars. Astrophysical Journal, 2022, 927, 180.	1.6	35
6	ALPINE: A Large Survey to Understand Teenage Galaxies. Universe, 2022, 8, 314.	0.9	2
7	The ALPINE–ALMA [C II] survey. Astronomy and Astrophysics, 2021, 646, A76.	2.1	39
8	Initial Characterization of Active Transitioning Centaur, P/2019 LD ₂ (ATLAS), Using Hubble, Spitzer, ZTF, Keck, Apache Point Observatory, and GROWTH Visible and Infrared Imaging and Spectroscopy. Astronomical Journal, 2021, 161, 116.	1.9	13
9	Mid-infrared Outbursts in Nearby Galaxies (MIRONG). I. Sample Selection and Characterization. Astrophysical Journal, Supplement Series, 2021, 252, 32.	3.0	26
10	Bright, Months-long Stellar Outbursts Announce the Explosion of Interaction-powered Supernovae. Astrophysical Journal, 2021, 907, 99.	1.6	59
11	Time-series and Phase-curve Photometry of the Episodically Active Asteroid (6478) Gault in a Quiescent State Using APO, GROWTH, P200, and ZTF. Astrophysical Journal Letters, 2021, 911, L35.	3.0	10
12	A Large Fraction of Hydrogen-rich Supernova Progenitors Experience Elevated Mass Loss Shortly Prior to Explosion. Astrophysical Journal, 2021, 912, 46.	1.6	66
13	The ALPINE-ALMA [CII] survey. Astronomy and Astrophysics, 2021, 649, A152.	2.1	56
14	AGNs on the Move: A Search for Off-nuclear AGNs from Recoiling Supermassive Black Holes and Ongoing Galaxy Mergers with the Zwicky Transient Facility. Astrophysical Journal, 2021, 913, 102.	1.6	19
15	Type Ic supernovae from the (intermediate) Palomar Transient Factory. Astronomy and Astrophysics, 2021, 651, A81.	2.1	19
16	Reverberation in Tidal Disruption Events: Dust Echoes, Coronal Emission Lines, Multi-wavelength Cross-correlations, and QPOs. Space Science Reviews, 2021, 217, 1.	3.7	17
17	The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sample. I. Host-galaxy Distribution Functions and Environment Dependence of Core-collapse Supernovae. Astrophysical Journal, Supplement Series, 2021, 255, 29.	3.0	56
18	The Type II supernova SN 2020jfo in M 61, implications for progenitor system, and explosion dynamics. Astronomy and Astrophysics, 2021, 655, A105.	2.1	10

#	Article	IF	CITATIONS
19	The ALPINE-ALMA [CII] survey. Astronomy and Astrophysics, 2021, 653, A84.	2.1	17
20	The ALPINE-ALMA [CII] survey. Astronomy and Astrophysics, 2021, 653, A111.	2.1	26
21	A Family Tree of Optical Transients from Narrow-line Seyfert 1 Galaxies. Astrophysical Journal, 2021, 920, 56.	1.6	28
22	Near-infrared Supernova la Distances: Host Galaxy Extinction and Mass-step Corrections Revisited. Astrophysical Journal, 2021, 923, 237.	1.6	24
23	The ALPINE-ALMA [C <scp>ii</scp>] survey: a triple merger at <i>z</i> â^¼ 4.56. Monthly Notices of the Roya Astronomical Society: Letters, 2020, 491, L18-L23.	al 1.2	21
24	The ALPINE-ALMA [CII] survey. Astronomy and Astrophysics, 2020, 643, A1.	2.1	125
25	The ALPINEâ^ALMA [C <scp>ii</scp>] Survey: on the nature of an extremely obscured serendipitous galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 496, 875-887.	1.6	17
26	The ALPINE-ALMA [CII] survey. Astronomy and Astrophysics, 2020, 643, A4.	2.1	69
27	The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic Classification and the Redshift Completeness of Local Galaxy Catalogs. Astrophysical Journal, 2020, 895, 32.	1.6	91
28	The BUFFALO HST Survey. Astrophysical Journal, Supplement Series, 2020, 247, 64.	3.0	57
29	The ALPINE–ALMA [C ii]ÂSurvey: Multiwavelength Ancillary Data and Basic Physical Measurements. Astrophysical Journal, Supplement Series, 2020, 247, 61.	3.0	99
30	Characterization of the Nucleus, Morphology, and Activity of Interstellar Comet 2I/Borisov by Optical and Near-infrared GROWTH, Apache Point, IRTF, ZTF, and Keck Observations. Astronomical Journal, 2020, 160, 26.	1.9	28
31	The ALPINE-ALMA [C†II] survey. Astronomy and Astrophysics, 2020, 643, A3.	2.1	86
32	The ALPINE-ALMA [CII] survey: Data processing, catalogs, and statistical source properties. Astronomy and Astrophysics, 2020, 643, A2.	2.1	136
33	The ALPINE-ALMA [C†II] survey. Astronomy and Astrophysics, 2020, 643, A5.	2.1	55
34	The ALPINE-ALMA [CII] survey. Astronomy and Astrophysics, 2020, 643, A7.	2.1	23
35	The ALPINE-ALMA [CII] survey. Astronomy and Astrophysics, 2020, 643, A8.	2.1	113
36	Two stripped envelope supernovae with circumstellar interaction. Astronomy and Astrophysics, 2020, 643, A79.	2.1	18

#	Article	IF	CITATIONS
37	The ALPINE–ALMA [C ii] Survey: Size of Individual Star-forming Galaxies at zÂ=Â4–6 and Their Extended Halo Structure. Astrophysical Journal, 2020, 900, 1.	1.6	86
38	Early Ultraviolet Observations of Type IIn Supernovae Constrain the Asphericity of Their Circumstellar Material. Astrophysical Journal, 2020, 899, 51.	1.6	9
39	The Spectacular Ultraviolet Flash from the Peculiar Type Ia Supernova 2019yvq. Astrophysical Journal, 2020, 898, 56.	1.6	32
40	A Mid-infrared Flare in the Active Galaxy MCG-02-04-026: Dust Echo of a Nuclear Transient Event. Astrophysical Journal, 2020, 898, 129.	1.6	8
41	SN 2020bvc: A Broad-line Type Ic Supernova with a Double-peaked Optical Light Curve and a Luminous X-Ray and Radio Counterpart. Astrophysical Journal, 2020, 902, 86.	1.6	25
42	Four (Super)luminous Supernovae from the First Months of the ZTF Survey. Astrophysical Journal, 2020, 901, 61.	1.6	25
43	The Zwicky Transient Facility Census of the Local Universe. I. Systematic Search for Calcium-rich Gap Transients Reveals Three Related Spectroscopic Subclasses. Astrophysical Journal, 2020, 905, 58.	1.6	57
44	The Zwicky Transient Facility Bright Transient Survey. II. A Public Statistical Sample for Exploring Supernova Demographics*. Astrophysical Journal, 2020, 904, 35.	1.6	107
45	The ALPINE-ALMA [C II] Survey: [C II] 158 μm Emission Line Luminosity Functions at zÂâ^¼Â4–6. Astrophysica Journal, 2020, 905, 147.	1.6	23
46	Characterization of Temporarily Captured Minimoon 2020 CD ₃ by Keck Time-resolved Spectrophotometry. Astrophysical Journal Letters, 2020, 900, L45.	3.0	15
47	Helium-rich Superluminous Supernovae from the Zwicky Transient Facility. Astrophysical Journal Letters, 2020, 902, L8.	3.0	18
48	The Zwicky Transient Facility: Science Objectives. Publications of the Astronomical Society of the Pacific, 2019, 131, 078001.	1.0	453
49	ZTF18aalrxas: A Type Ilb Supernova from a Very Extended Low-mass Progenitor. Astrophysical Journal Letters, 2019, 878, L5.	3.0	24
50	Census of the Local Universe (CLU) Narrowband Survey. I. Galaxy Catalogs from Preliminary Fields. Astrophysical Journal, 2019, 880, 7.	1.6	43
51	Discovery of Highly Blueshifted Broad Balmer and Metastable Helium Absorption Lines in a Tidal Disruption Event. Astrophysical Journal, 2019, 879, 119.	1.6	38
52	A New Class of Changing-look LINERs. Astrophysical Journal, 2019, 883, 31.	1.6	66
53	GROWTH on S190426c: Real-time Search for a Counterpart to the Probable Neutron Star–Black Hole Merger using an Automated Difference Imaging Pipeline for DECam. Astrophysical Journal Letters, 2019, 881, L7.	3.0	39
54	The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole?. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1031-1049.	1.6	136

#	Article	IF	Citations
55	Rapid "Turn-on―of Type-1 AGN in a Quiescent Early-type Galaxy SDSS1115+0544. Astrophysical Journal, 2019, 874, 44.	1.6	33
56	The Broad Absorption Line Tidal Disruption Event iPTF15af: Optical and Ultraviolet Evolution. Astrophysical Journal, 2019, 873, 92.	1.6	69
57	The First Tidal Disruption Flare in ZTF: From Photometric Selection to Multi-wavelength Characterization. Astrophysical Journal, 2019, 872, 198.	1.6	74
58	Panchromatic study of the first galaxies with large ALMA programs. Proceedings of the International Astronomical Union, 2019, 15, 12-16.	0.0	2
59	The Zwicky Transient Facility: System Overview, Performance, and First Results. Publications of the Astronomical Society of the Pacific, 2019, 131, 018002.	1.0	1,020
60	ZTF Early Observations of Type Ia Supernovae. I. Properties of the 2018 Sample. Astrophysical Journal, 2019, 886, 152.	1.6	77
61	Simultaneous Observations of the Northern TESS Sectors by the Zwicky Transient Facility. Research Notes of the AAS, 2019, 3, 136.	0.3	11
62	Spectra of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory. Astrophysical Journal, 2018, 855, 2.	1.6	98
63	Sifting for Sapphires: Systematic Selection of Tidal Disruption Events in iPTF. Astrophysical Journal, Supplement Series, 2018, 238, 15.	3.0	30
64	Light Curves of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory. Astrophysical Journal, 2018, 860, 100.	1.6	105
65	Long-term decline of the mid-infrared emission of normal galaxies: dust echo of tidal disruption flare?. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2943-2965.	1.6	29
66	A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova. Nature Astronomy, 2018, 2, 887-895.	4.2	39
67	Revisiting the Extended Schmidt Law: The Important Role of Existing Stars in Regulating Star Formation. Astrophysical Journal, 2018, 853, 149.	1.6	54
68	Far-UV HSTÂ Spectroscopy of an Unusual Hydrogen-poor Superluminous Supernova: SN2017egm. Astrophysical Journal, 2018, 858, 91.	1.6	26
69	iPTF Discovery of the Rapid "Turn-on―of a Luminous Quasar. Astrophysical Journal, 2017, 835, 144.	1.6	97
70	Exploring the Evolution of Star Formation and Dwarf Galaxy Properties with JWST/MIRI Serendipitous Spectroscopic Surveys. Astrophysical Journal, 2017, 836, 171.	1.6	4
71	iPTF16geu: A multiply imaged, gravitationally lensed type la supernova. Science, 2017, 356, 291-295.	6.0	168
72	Far-ultraviolet to Near-infrared Spectroscopy of a Nearby Hydrogen-poor Superluminous Supernova Gaia16apd. Astrophysical Journal, 2017, 840, 57.	1.6	57

#	Article	IF	CITATIONS
73	Discovery of a Mid-infrared Echo from the TDE Candidate in the Nucleus of ULIRG F01004â^22237. Astrophysical Journal Letters, 2017, 841, L8.	3.0	33
74	Revisiting Optical Tidal Disruption Events with iPTF16axa. Astrophysical Journal, 2017, 842, 29.	1.6	124
7 5	Two New Calcium-rich Gap Transients in Group and Cluster Environments. Astrophysical Journal, 2017, 836, 60.	1.6	60
76	Hydrogen-poor Superluminous Supernovae with Late-time Hα Emission: Three Events From the Intermediate Palomar Transient Factory. Astrophysical Journal, 2017, 848, 6.	1.6	91
77	Illuminating gravitational waves: A concordant picture of photons from a neutron star merger. Science, 2017, 358, 1559-1565.	6.0	559
78	Mid-infrared Variability of Changing-look AGNs. Astrophysical Journal Letters, 2017, 846, L7.	3.0	95
79	iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy. Astrophysical Journal, 2017, 844, 46.	1.6	111
80	THE LOCAL [C ii] 158 μm EMISSION LINE LUMINOSITY FUNCTION. Astrophysical Journal, 2017, 834, 36.	1.6	28
81	ON THE EARLY-TIME EXCESS EMISSION IN HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE. Astrophysical Journal, 2017, 835, 58.	1.6	61
82	A Controlled Study of Cold Dust Content in Galaxies from zÂ=Â0–2. Astrophysical Journal, 2017, 843, 71.	1.6	18
83	The IPAC Image Subtraction and Discovery Pipeline for the Intermediate Palomar Transient Factory. Publications of the Astronomical Society of the Pacific, 2017, 129, 014002.	1.0	80
84	Spatially resolved analysis of superluminous supernovae PTF 11hrq and PTF 12dam host galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4705-4717.	1.6	10
85	Are High-redshift Galaxies Hot? Temperature of zÂ>Â5 Galaxies and Implications for Their Dust Properties. Astrophysical Journal, 2017, 847, 21.	1.6	88
86	Mid-infrared Flare of TDE Candidate PS16dtm: Dust Echo and Implications for the Spectral Evolution. Astrophysical Journal, 2017, 850, 63.	1.6	36
87	HOST-GALAXY PROPERTIES OF 32 LOW-REDSHIFT SUPERLUMINOUS SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY. Astrophysical Journal, 2016, 830, 13.	1.6	170
88	THE ROLE OF STAR FORMATION AND AGN IN DUST HEATING OF $Z=0.3\hat{a}\in "2.8$ Galaxies. II. INFORMING IR AGN FRACTION ESTIMATES THROUGH SIMULATIONS. Astrophysical Journal, 2016, 833, 60.	1.6	22
89	PROPERTIES OF INTERSTELLAR MEDIUM IN INFRARED-BRIGHT QSOs PROBED BY [O i] 63 μm AND [C ii] 158 μn EMISSION LINES*. Astrophysical Journal, 2016, 824, 146.	¹ 1.6	9
90	Unveiling the dynamic infrared sky with Gattini-IR. Proceedings of SPIE, 2016, , .	0.8	7

#	Article	IF	CITATIONS
91	REST-UV ABSORPTION LINES AS METALLICITY ESTIMATOR: THE METAL CONTENT OF STAR-FORMING GALAXIES AT z \hat{a}^4 5. Astrophysical Journal, 2016, 822, 29.	1.6	53
92	AN ULTRAVIOLET SPECTRUM OF THE TIDAL DISRUPTION FLARE ASASSN-14li. Astrophysical Journal Letters, 2016, 818, L32.	3.0	55
93	DETECTION OF BROAD Hα EMISSION LINES IN THE LATE-TIME SPECTRA OF A HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA. Astrophysical Journal, 2015, 814, 108.	1.6	107
94	BINARY ACTIVE GALACTIC NUCLEI IN STRIPE 82: CONSTRAINTS ON SYNCHRONIZED BLACK HOLE ACCRETION IN MAJOR MERGERS. Astrophysical Journal Letters, 2015, 815, L6.	3.0	34
95	THE ROLE OF STAR FORMATION AND AN AGN IN DUST HEATING OF <i>>z</i> = 0.3â€"2.8 GALAXIES. I. EVOLUTION WITH REDSHIFT AND LUMINOSITY. Astrophysical Journal, 2015, 814, 9.	1.6	128
96	RADIO-SELECTED BINARY ACTIVE GALACTIC NUCLEI FROM THE VERY LARGE ARRAY STRIPE 82 SURVEY. Astrophysical Journal, 2015, 799, 72.	1.6	49
97	Galaxies at redshifts 5 to 6 with systematically low dust content and high [C ii] emission. Nature, 2015, 522, 455-458.	13.7	369
98	INITIAL PERFORMANCE OF THE <i>NEOWISE</i> REACTIVATION MISSION. Astrophysical Journal, 2014, 792, 30.	1.6	426
99	A CONTINUUM OF H- TO He-RICH TIDAL DISRUPTION CANDIDATES WITH A PREFERENCE FOR E+A GALAXIES. Astrophysical Journal, 2014, 793, 38.	1.6	332
100	ALMA IMAGING OF GAS AND DUST IN A GALAXY PROTOCLUSTER AT REDSHIFT 5.3: [C II] EMISSION IN "TYPICAL―GALAXIES AND DUSTY STARBURSTS â‰^1 BILLION YEARS AFTER THE BIG BANG. Astrophysical Journal, 2014, 796, 84.	1.6	151
101	MODELING MID-INFRARED DIAGNOSTICS OF OBSCURED QUASARS AND STARBURSTS. Astrophysical Journal, 2013, 768, 168.	1.6	41
102	CHARACTERIZING THE MID-INFRARED EXTRAGALACTIC SKY WITH <i>WISE</i> AND SDSS. Astronomical Journal, 2013, 145, 55.	1.9	146
103	<i>SPITZER</i> - AND <i>HERSCHEL</i> -BASED SPECTRAL ENERGY DISTRIBUTIONS OF 24 μm BRIGHT <i>z</i> 6.3-3.0 STARBURSTS AND OBSCURED QUASARS. Astrophysical Journal, 2012, 757, 13.	1.6	60
104	MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE <i>WIDE-FIELD INFRARED SURVEY EXPLORER</i> . I. CHARACTERIZING <i>WISE</i> -SELECTED ACTIVE GALACTIC NUCLEI IN COSMOS. Astrophysical Journal, 2012, 753, 30.	1.6	637
105	THE NATURE OF DOUBLE-PEAKED [O III] ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2012, 745, 67.	1.6	122
106	ORIGIN OF 12 $\hat{1}$ 4m EMISSION ACROSS GALAXY POPULATIONS FROM (i) WISE (i) AND SDSS SURVEYS. Astrophysical Journal, 2012, 748, 80.	1.6	76
107	<i>HST</i> /NICMOS IMAGING OF BRIGHT HIGH-REDSHIFT 24 νm SELECTED GALAXIES: MERGING PROPERTIES. Astrophysical Journal, 2011, 730, 125.	1.6	23
108	EXTENDED SCHMIDT LAW: ROLE OF EXISTING STARS IN CURRENT STAR FORMATION. Astrophysical Journal, 2011, 733, 87.	1.6	118

#	Article	IF	CITATIONS
109	A KILOPARSEC-SCALE BINARY ACTIVE GALACTIC NUCLEUS CONFIRMED BY THE EXPANDED VERY LARGE ARRAY. Astrophysical Journal Letters, 2011, 740, L44.	3.0	84
110	A massive protocluster of galaxies at a redshift of z â‰^ 5.3. Nature, 2011, 470, 233-235.	13.7	234
111	ULTRA-DEEP MID-INFRARED SPECTROSCOPY OF LUMINOUS INFRARED GALAXIES AT <i>z</i> â^¼ 1 AND <i>z</i> âr Astrophysical Journal, 2010, 719, 425-450.	1.6. 1.6	53
112	A MASSIVE MOLECULAR GAS RESERVOIR IN THE $\langle i \rangle z \langle i \rangle = 5.3$ SUBMILLIMETER GALAXY AzTEC-3. Astrophysical Journal Letters, 2010, 720, L131-L136.	3.0	148
113	X-RAY CONSTRAINTS ON THE ACTIVE GALACTIC NUCLEI PROPERTIES IN <i>>SPITZER</i> -INFRARED SPECTROGRAPH IDENTIFIED <i>z</i> -i>a^1/4 2 ULTRALUMINOUS INFRARED GALAXIES. Astrophysical Journal, 2010, 710, 212-226.	1.6	36
114	THE â^1/40.9 mJy SAMPLE: A MID-INFRARED SPECTROSCOPIC CATALOG OF 150 INFRARED-LUMINOUS, 24 Î1/4 m SELECTED GALAXIES AT 0.3 â@1/2 <i>2</i>	1.6	37
115	<i>Spitzer</i> Midâ€Infrared Spectroscopy of Infrared Luminous Galaxies at <i>z</i> â^1⁄4 2. III. Farâ€IR to Radio Properties and Optical Spectral Diagnostics. Astrophysical Journal, 2008, 683, 659-682.	1.6	87
116	SpitzerMidâ€Infrared Spectroscopy of Infrared Luminous Galaxies atzâ^1/4 2. I. The Spectra. Astrophysical Journal, 2007, 658, 778-793.	1.6	158
117	<i>Spitzer</i> Midâ€Infrared Spectroscopy of Infrared Luminous Galaxies at <i>z</i> â^1⁄42. II. Diagnostics. Astrophysical Journal, 2007, 664, 713-737.	1.6	134
118	Star Formation Rates and Extinction Properties of IRâ€luminous Galaxies in theSpitzerFirst Look Survey. Astrophysical Journal, 2006, 637, 227-241.	1.6	47
119	Star Formation and Extinction in Redshiftzâ^1/42 Galaxies: Inferences fromSpitzerMIPS Observations. Astrophysical Journal, 2006, 644, 792-812.	1.6	287
120	Millimeter Observations of Obscured Spitzer 24 μm Sources. Astrophysical Journal, 2005, 632, L13-L16.	1.6	36
121	Obscured and Unobscured Active Galactic Nuclei in the Spitzer Space Telescope First Look Survey. Astrophysical Journal, Supplement Series, 2004, 154, 166-169.	3.0	589