
Bryan C Mounce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7999759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting Polyamines Inhibits Coronavirus Infection by Reducing Cellular Attachment and Entry. ACS Infectious Diseases, 2021, 7, 1423-1432.	1.8	26
2	Polyamine Analog Diethylnorspermidine Restricts Coxsackievirus B3 and Is Overcome by 2A Protease Mutation In Vitro. Viruses, 2021, 13, 310.	1.5	10
3	Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science, 2021, 373, 931-936.	6.0	173
4	Virion-Associated Polyamines Transmit with Bunyaviruses to Maintain Infectivity and Promote Entry. ACS Infectious Diseases, 2020, 6, 2490-2501.	1.8	14
5	High-Throughput Fluorescence-Based Screen Identifies the Neuronal MicroRNA miR-124 as a Positive Regulator of Alphavirus Infection. Journal of Virology, 2020, 94, .	1.5	10
6	Diverse Functions of Polyamines in Virus Infection. Biomolecules, 2020, 10, 628.	1.8	53
7	Novel Ionophores Active against La Crosse Virus Identified through Rapid Antiviral Screening. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	23
8	Polyamine Depletion Abrogates Enterovirus Cellular Attachment. Journal of Virology, 2019, 93, .	1.5	17
9	Ribavirin Induces Polyamine Depletion via Nucleotide Depletion to Limit Virus Replication. Cell Reports, 2019, 28, 2620-2633.e4.	2.9	27
10	Coxsackievirus B3 Responds to Polyamine Depletion via Enhancement of 2A and 3C Protease Activity. Viruses, 2019, 11, 403.	1.5	20
11	Polyamine Depletion Inhibits Bunyavirus Infection via Generation of Noninfectious Interfering Virions. Journal of Virology, 2019, 93, .	1.5	20
12	Imaging of viral neuroinvasion in the zebrafish reveals that Sindbis and chikungunya viruses favour different entry routes. DMM Disease Models and Mechanisms, 2017, 10, 847-857.	1.2	46
13	Chikungunya Virus Overcomes Polyamine Depletion by Mutation of nsP1 and the Opal Stop Codon To Confer Enhanced Replication and Fitness. Journal of Virology, 2017, 91, .	1.5	35
14	Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Research, 2017, 142, 148-157.	1.9	246
15	Polyamines and Their Role in Virus Infection. Microbiology and Molecular Biology Reviews, 2017, 81, .	2.9	82
16	Uptake and metabolism of arginine impact Plasmodium development in the liver. Scientific Reports, 2017, 7, 4072.	1.6	29
17	Attenuation of RNA viruses by redirecting their evolution in sequence space. Nature Microbiology, 2017, 2, 17088.	5.9	77
18	Inhibition of Polyamine Biosynthesis Is a Broad-Spectrum Strategy against RNA Viruses. Journal of Virology, 2016, 90, 9683-9692.	1.5	71

BRYAN C MOUNCE

#	Article	IF	CITATIONS
19	Interferon-Induced Spermidine-Spermine Acetyltransferase and Polyamine Depletion Restrict Zika and Chikungunya Viruses. Cell Host and Microbe, 2016, 20, 167-177.	5.1	105
20	ZIKA virus elicits P53 activation and genotoxic stress in human neural progenitors similar to mutations involved in severe forms of genetic microcephaly and p53. Cell Death and Disease, 2016, 7, e2440-e2440.	2.7	88
21	Low-Fidelity Polymerases of Alphaviruses Recombine at Higher Rates To Overproduce Defective Interfering Particles. Journal of Virology, 2016, 90, 2446-2454.	1.5	57
22	Whole-Genome Sequencing Analysis from the Chikungunya Virus Caribbean Outbreak Reveals Novel Evolutionary Genomic Elements. PLoS Neglected Tropical Diseases, 2016, 10, e0004402.	1.3	96
23	Murine Gammaherpesvirus 68 Pathogenesis Is Independent of Caspase-1 and Caspase-11 in Mice and Impairs Interleukin-1β Production upon Extrinsic Stimulation in Culture. Journal of Virology, 2015, 89, 6562-6574.	1.5	19
24	ATM facilitates mouse gammaherpesvirus reactivation from myeloid cells during chronic infection. Virology, 2015, 483, 264-274.	1.1	10
25	Interferon Regulatory Factor 1 Restricts Gammaherpesvirus Replication in Primary Immune Cells. Journal of Virology, 2014, 88, 6993-7004.	1.5	51
26	Primary Macrophages Rely on Histone Deacetylase 1 and 2 Expression To Induce Type I Interferon in Response to Gammaherpesvirus Infection. Journal of Virology, 2014, 88, 2268-2278.	1.5	17
27	Mouse gammaherpesvirus-68 infection acts as a rheostat to set the level of type I interferon signaling in primary macrophages. Virology, 2013, 443, 123-133.	1.1	21
28	A Conserved Gammaherpesvirus Protein Kinase Targets Histone Deacetylases 1 and 2 To Facilitate Viral Replication in Primary Macrophages. Journal of Virology, 2013, 87, 7314-7325.	1.5	14
29	Ataxia Telangiectasia Mutated Kinase Controls Chronic Gammaherpesvirus Infection. Journal of Virology, 2012, 86, 12826-12837.	1.5	34
30	Coordinate Regulation of DNA Damage and Type I Interferon Responses Imposes an Antiviral State That Attenuates Mouse Gammaherpesvirus Type 68 Replication in Primary Macrophages. Journal of Virology, 2012, 86, 6899-6912.	1.5	25
31	Gammaherpesvirus gene expression and DNA synthesis are facilitated by viral protein kinase and histone variant H2AX. Virology, 2011, 420, 73-81.	1.1	20
32	Dynamic association of gammaherpesvirus DNA with core histone during de novo lytic infection of primary cells. Virology, 2011, 421, 167-172.	1.1	14
33	Nonrandom distribution of intramolecular contacts in native singleâ€domain proteins. Proteins: Structure, Function and Bioinformatics, 2009, 75, 404-412.	1.5	6
34	Residue‧pecific Contact Order and Contact Breadth in Singleâ€Domain Proteins: Implications for Folding as a Function of Chain Elongation. Biotechnology Progress, 2008, 24, 570-575.	1.3	9
35	Bisacodyl Limits Chikungunya Virus Replication <i>In Vitro</i> and Is Broadly Antiviral. Antimicrobial Agents and Chemotherapy, 0, , .	1.4	0
36	Polyamine-Linked Cholesterol Incorporation in Rift Valley Fever Virus Particles Promotes Infectivity. ACS Infectious Diseases, 0, , .	1.8	3