Xiaobin Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7998907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of Asymmetric Rolling Process and Thickness Reduction on the Microstructure and Mechanical Properties of the Al–Mg-Si Alloy. Metals and Materials International, 2022, 28, 1620-1629.	1.8	4
2	Microstructure stability and high temperature wear behavior of an austenite aging steel coating by laser cladding. Materials Characterization, 2022, 184, 111700.	1.9	11
3	Influence of Sc and Zr additions on microstructure and properties evolution of Al–Zn–Mg alloy. Journal of Materials Science, 2022, 57, 2208-2228.	1.7	1
4	Effect of the oxidation reaction interface on the accelerated corrosion behaviour of Al–Mg–Si alloy. Corrosion Engineering Science and Technology, 2022, 57, 343-354.	0.7	1
5	Effect of tensile stress response for oxide films on the fatigue failure behavior of anodized AA6082 alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 850, 143552.	2.6	7
6	Effect of the Cross Accumulative Roll Bonding on the Corrosion Behaviour of AA6082/AA7204 Composite Sheets. Metals and Materials International, 2021, 27, 3709-3719.	1.8	8
7	Microstructures and strengthening mechanisms of high Fe containing Al–Mg–Si–Mn–Fe alloys with Mg, Si and Mn modified. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140477.	2.6	42
8	Activation of <c+a> slip and enhanced ductility in as-extruded Mg-Gd-Y-Nd alloys through Si addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 804, 140736.</c+a>	2.6	12
9	Experimental study of grain structures evolution and constitutive model of isothermal deformed 2A14 aluminum alloy. Journal of Materials Research and Technology, 2021, 12, 2348-2367.	2.6	15
10	Enhancing the Intergranular Corrosion Resistance of the Al–Mg–Si Alloy with Low Zn Content by the Interrupted Aging Treatment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 4907.	1.1	4
11	Role of twinning and texture on fatigue resistance enhancement of Mg-6Cd-3Y-1Nd-0.5Zr alloys. International Journal of Fatigue, 2021, 153, 106471.	2.8	9
12	Exploration of Trade-Off Between Elastic Modulus and Strength of Mg–Gd–Y–Nd–Zr Alloy by Regulating Intermetallic Phases Through Si Addition. Metals and Materials International, 2021, 27, 3740-3749.	1.8	4
13	Effect of isothermal compression and subsequent heat treatment on grain structures evolution of Al-Mg-Si alloy. Journal of Central South University, 2021, 28, 2670-2686.	1.2	9
14	Effect of edge dislocations on the distribution of Î,′ precipitates in stress-aged Al–Cu single crystal. Journal of Alloys and Compounds, 2020, 812, 152173.	2.8	2
15	Effect of grain size and crystal orientation on the corrosion behavior of as-extruded Mg-6Gd-2Y-0.2Zr alloy. Corrosion Science, 2020, 164, 108338.	3.0	77
16	The microstructure and corrosion resistance of as-extruded Mg-6Gd-2Y- (0–1.5) Nd-0.2Zr alloys. Materials and Design, 2020, 186, 108289.	3.3	34
17	Effect of ageing treatments on the precipitation behavior and mechanical properties of Al–Cu–Li alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 773, 138885.	2.6	44
18	A comparison of the dry sliding wear of single-phase f.c.c. carbon-doped Fe40.4Ni11.3Mn34.8Al7.5Cr6 and CoCrFeMnNi high entropy alloys with 316 stainless steel. Materials Characterization, 2020, 170, 110693.	1.9	16

XIAOBIN GUO

#	Article	IF	CITATIONS
19	Effect of double-step homogenization treatments on the microstructure and mechanical properties of Al–Cu–Li–Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 795, 139975.	2.6	36
20	Effect of asymmetric rolling and subsequent ageing on the microstructure, texture and mechanical properties of the Al-Cu-Li alloy. Journal of Alloys and Compounds, 2020, 836, 155445.	2.8	31
21	Effect of multi-stage aging treatments on the precipitation and mechanical properties of Al-Zn-Mg alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 785, 139394.	2.6	12
22	An in-situ study on the dissolution of intermetallic compounds in the Al–Zn–Mg–Cu alloy. Journal of Alloys and Compounds, 2020, 829, 154612.	2.8	8
23	Influence of aging treatments on the strength and localized corrosion resistance of aged Al–Zn–Mg–Cu alloy. Journal of Alloys and Compounds, 2020, 846, 156223.	2.8	29
24	A comparison of the dry sliding wear behavior of NiCoCr medium entropy alloy with 316 stainless steel. Materials Characterization, 2020, 160, 110132.	1.9	12
25	Influence of Minor Zn Addition on Precipitation Behavior and Intergranular Corrosion Properties of Al-Mg-Si Alloy. Materials, 2020, 13, 650.	1.3	5
26	Effects of grain structure related precipitation on corrosion behavior and corrosion fatigue property of Al–Mg–Si alloy. Journal of Materials Research and Technology, 2020, 9, 5391-5402.	2.6	21
27	Effect of grain boundaries on the preferential orientation distribution of Î,′ precipitates in stress-aged Al–2Cu alloy bicrystals. Journal of Alloys and Compounds, 2019, 794, 501-508.	2.8	3
28	Revisit the stress-orienting effect of $\hat{l}_{,}'$ in Al-Cu single crystal during stress aging. Materials Characterization, 2018, 135, 270-277.	1.9	25
29	Quantitative study of the effect of stress on the precipitation in an Al-Cu-Mg-Ag alloy single crystal. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 730, 187-196.	2.6	6
30	Microstructure and microtexture evolution of shear bands in Al–Cu single crystal during asymmetric rolling. Materials Characterization, 2017, 128, 37-42.	1.9	10
31	Effect of grain boundary on the precipitation behavior and hardness of Al-Cu-Mg alloy bicrystals during stress-aging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 683, 129-134.	2.6	2
32	A Precipitate-Strengthening Model Based on Crystallographic Anisotropy, Stress-Induced Orientation, and Dislocation of Stress-Aged Al-Cu-Mg Single Crystals. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 4857-4870.	1.1	5
33	Morphology Development and Kinetics of Plate or Rod Shaped Precipitates in Aluminum Alloys. Rare Metal Materials and Engineering, 2017, 46, 876-881.	0.8	2
34	Calculation and experimental study on heating temperature field of super-high strength aluminum alloy thick plate. Transactions of Nonferrous Metals Society of China, 2017, 27, 2415-2422.	1.7	1
35	Influence of Fillet-Radius and Lubrication on Stamping Quality of Multi-Recessed Aluminum Panels. , 2017, , .		0

XIAOBIN GUO

#	Article	IF	CITATIONS
37	Investigating the Synchronization of Shape and Property of 2124 Aluminum Alloy in Creep Age Forming with the Effects of Pre-Stretching. , 2017, , .		0
38	Microstructure and property of stress aged Al–Cu single crystal under various applied stresses. Transactions of Nonferrous Metals Society of China, 2016, 26, 2838-2845.	1.7	9
39	Effect of loading orientations on the microstructure and property of Al Cu single crystal during stress aging. Materials Characterization, 2016, 117, 35-40.	1.9	18
40	The precipitation behavior of Al–Cu–Mg–Ag single crystal during aging under elevated compression stresses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 669, 33-40.	2.6	12
41	Changing distribution and geometry of S′ in Al–Cu–Mg single crystals during stress aging by controlling the loading orientation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 650, 154-160.	2.6	26
42	A crystallographic orientation based model for describing the precipitation strengthening of stress-aged Al–Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 644, 358-364.	2.6	12
43	The inhibiting effect of dislocation helices on the stress-induced orientation of S' precipitates in Al–Cu–Mg alloy. Materials Characterization, 2015, 107, 197-201.	1.9	27