Wen-Yan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7998615/publications.pdf

Version: 2024-02-01

933447 752698 20 525 10 20 citations g-index h-index papers 20 20 20 477 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly selective luminescence sensing for the detection of nitrobenzene and Fe ³⁺ by new Cd(<scp>ii</scp>)-based MOFs. CrystEngComm, 2018, 20, 477-486.	2.6	119
2	Four new metal–organic frameworks based on diverse secondary building units: sensing and magnetic properties. Dalton Transactions, 2018, 47, 1682-1692.	3.3	98
3	Tunable Emission and Selective Luminescence Sensing in a Series of Lanthanide Metal–Organic Frameworks with Uncoordinated Lewis Basic Triazolyl Sites. Crystal Growth and Design, 2018, 18, 2031-2039.	3.0	57
4	New Luminescent Three-Dimensional Zn(II)/Cd(II)-Based Metal–Organic Frameworks Showing High H ₂ Uptake and CO ₂ Selectivity Capacity. Crystal Growth and Design, 2017, 17, 2059-2065.	3.0	39
5	Seven luminescent metal–organic frameworks constructed from 5-(triazol-1-yl)nicotinic acid: luminescent sensors for Cr ^{VI} and MnO ₄ ^{â^'} ions in an aqueous medium. New Journal of Chemistry, 2018, 42, 9865-9875.	2.8	39
6	Four new 3D metal–organic frameworks constructed by the asymmetrical pentacarboxylate: gas sorption behaviour and magnetic properties. Dalton Transactions, 2016, 45, 15473-15480.	3.3	29
7	Design and preparation of new luminescent metal–organic frameworks and different doped isomers: sensing pollution ions and enhancement of gas capture capacity. Inorganic Chemistry Frontiers, 2021, 8, 286-295.	6.0	25
8	A 2-Fold Interpenetrated Nitrogen-Rich Metalâ€"Organic Framework: Dye Adsorption and CO ₂ Capture and Conversion. Inorganic Chemistry, 2021, 60, 3156-3164.	4.0	25
9	Zeolitic Metal Cluster Carboxylic Framework for Selective Carbon Dioxide Chemical Fixation through the Superlarge Cage. Inorganic Chemistry, 2020, 59, 3912-3918.	4.0	19
10	Stable Indium Pyridylcarboxylate Framework with Highly Selective Adsorption of Cationic Dyes and Effective Nitenpyram Detection. Inorganic Chemistry, 2021, 60, 5232-5239.	4.0	17
11	Four new water-stable metal-organic frameworks based on diverse metal clusters: Syntheses, structures, and luminescent sensing properties. Journal of Solid State Chemistry, 2019, 269, 386-395.	2.9	10
12	Highly Efficient I ₂ Sorption, CO ₂ Capture, and Catalytic Conversion by Introducing Nitrogen Donor Sites in a Microporous Co(II)-Based Metal–Organic Framework. Inorganic Chemistry, 2022, 61, 7005-7016.	4.0	10
13	Seven new complexes based on various coordination modes of bifunctional ligand: Luminescent sensing and magnetic properties. Inorganica Chimica Acta, 2019, 495, 118971.	2.4	8
14	A multi-functional two-dimensional Zn(<scp>ii</scp>)-organic framework for selective carbon dioxide adsorption, sensing of nitrobenzene and Cr ₂ O ₇ ^{2â°'} . CrystEngComm, 2021, 23, 7643-7649.	2.6	7
15	A new 3D luminescent Ba-organic framework with high open metal sites: CO ₂ fixation, luminescence sensing, and dye sorption. CrystEngComm, 2021, 23, 663-670.	2.6	6
16	Two porous three-dimensional (3D) metal–organic frameworks based on diverse metal clusters: selective sensing of Fe ³⁺ and Cr ₂ O ₇ ^{2â°'} . New Journal of Chemistry, 2022, 46, 4292-4299.	2.8	6
17	Luminescent metal-organic frameworks constructed by a V-shaped pentacarboxylic acid ligand as bifunctional chemosensors for Fe3+ and Cr2O72 Journal of Solid State Chemistry, 2022, 309, 122988.	2.9	5
18	A new multi-functional Cu(<scp>ii</scp>)-organic framework as a platform for selective carbon dioxide chemical fixation and separation of organic dyes. CrystEngComm, 2021, 23, 8315-8322.	2.6	3

#	Article	IF	CITATIONS
19	Two novel luminescent metal-organic frameworks based on the thioether bond modification: The selective sensing and effective CO2 fixation. Journal of Solid State Chemistry, 2022, 307, 122813.	2.9	2
20	Uncommon thioether-modified metal–organic frameworks with unique selective CO ₂ sorption and efficient catalytic conversion. CrystEngComm, 2021, 23, 1447-1454.	2.6	1