
Jason M Butler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/799859/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Angiocrine functions of organ-specific endothelial cells. Nature, 2016, 529, 316-325.	13.7	717
2	Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature, 2010, 468, 310-315.	13.7	686
3	The bone marrow microenvironment at single-cell resolution. Nature, 2019, 569, 222-228.	13.7	624
4	Endothelial Cells Are Essential for the Self-Renewal and Repopulation of Notch-Dependent Hematopoietic Stem Cells. Cell Stem Cell, 2010, 6, 251-264.	5.2	582
5	Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature, 2016, 532, 323-328.	13.7	553
6	Engraftment and Reconstitution of Hematopoiesis Is Dependent on VEGFR2-Mediated Regeneration of Sinusoidal Endothelial Cells. Cell Stem Cell, 2009, 4, 263-274.	5.2	548
7	Molecular Signatures of Tissue-Specific Microvascular Endothelial Cell Heterogeneity in Organ Maintenance and Regeneration. Developmental Cell, 2013, 26, 204-219.	3.1	548
8	Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nature Reviews Cancer, 2010, 10, 138-146.	12.8	511
9	Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nature Cell Biology, 2010, 12, 1046-1056.	4.6	343
10	Endothelial Jagged-1 Is Necessary for Homeostatic and Regenerative Hematopoiesis. Cell Reports, 2013, 4, 1022-1034.	2.9	224
11	Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature, 2014, 511, 312-318.	13.7	211
12	Angiocrine Factors Deployed by Tumor Vascular Niche Induce B Cell Lymphoma Invasiveness and Chemoresistance. Cancer Cell, 2014, 25, 350-365.	7.7	203
13	Conversion of adult endothelium to immunocompetent haematopoietic stem cells. Nature, 2017, 545, 439-445.	13.7	191
14	Inducible Nitric Oxide Synthase in Neutrophils and Endothelium Contributes to Ischemic Brain Injury in Mice. Journal of Immunology, 2014, 193, 2531-2537.	0.4	112
15	Endothelial transplantation rejuvenates aged hematopoietic stem cell function. Journal of Clinical Investigation, 2017, 127, 4163-4178.	3.9	109
16	Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells. Journal of Clinical Investigation, 2015, 125, 1243-1254.	3.9	96
17	Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration. Science Immunology, 2018, 3, .	5.6	93
18	Development of a vascular niche platform for expansion of repopulating human cord blood stem and progenitor cells. Blood, 2012, 120, 1344-1347.	0.6	90

JASON M BUTLER

#	Article	IF	CITATIONS
19	Human ESC-derived hemogenic endothelial cells undergo distinct waves of endothelial to hematopoietic transition. Blood, 2013, 121, 770-780.	0.6	78
20	Endothelium and NOTCH specify and amplify aorta-gonad-mesonephros–derived hematopoietic stem cells. Journal of Clinical Investigation, 2015, 125, 2032-2045.	3.9	74
21	Endothelial jagged-2 sustains hematopoietic stem and progenitor reconstitution after myelosuppression. Journal of Clinical Investigation, 2017, 127, 4242-4256.	3.9	63
22	The Role of the Donor in the Repair of the Marrow Vascular Niche Following Hematopoietic Stem Cell Transplant. Stem Cells, 2007, 25, 2945-2955.	1.4	60
23	Activation of the vascular niche supports leukemic progression and resistance to chemotherapy. Experimental Hematology, 2014, 42, 976-986.e3.	0.2	47
24	Chronic activation of endothelial MAPK disrupts hematopoiesis via NFKB dependent inflammatory stress reversible by SCGF. Nature Communications, 2020, 11, 666.	5.8	44
25	Vascular Platform to Define Hematopoietic Stem Cell Factors and Enhance Regenerative Hematopoiesis. Stem Cell Reports, 2015, 5, 881-894.	2.3	43
26	A Common Origin for B-1a and B-2 Lymphocytes in Clonal Pre- Hematopoietic Stem Cells. Stem Cell Reports, 2017, 8, 1563-1572.	2.3	41
27	Endothelial-specific inhibition of NF-κB enhances functional haematopoiesis. Nature Communications, 2016, 7, 13829.	5.8	40
28	Regulation of the hematopoietic stem cell lifecycle by the endothelial niche. Current Opinion in Hematology, 2017, 24, 289-299.	1.2	33
29	Endothelial Cells Promote Expansion of Long-Term Engrafting Marrow Hematopoietic Stem and Progenitor Cells in Primates. Stem Cells Translational Medicine, 2017, 6, 864-876.	1.6	28
30	Altered feto-placental vascularization, feto-placental malperfusion, and fetal growth restriction in mice with Egfl7 loss-of-function. Development (Cambridge), 2017, 144, 2469-2479.	1.2	26
31	The Chromatin Remodeler BPTF Activates a Stemness Gene-Expression Program Essential for the Maintenance of Adult Hematopoietic Stem Cells. Stem Cell Reports, 2018, 10, 675-683.	2.3	26
32	Engineering a niche supporting hematopoietic stem cell development using integrated single-cell transcriptomics. Nature Communications, 2022, 13, 1584.	5.8	23
33	The Instructive Role of the Bone Marrow Niche in Aging and Leukemia. Current Stem Cell Reports, 2018, 4, 291-298.	0.7	18
34	Endothelial mTOR maintains hematopoiesis during aging. Journal of Experimental Medicine, 2020, 217, .	4.2	18
35	Inhibition of Oxidative Phosphorylation Reverses Bone Marrow Hypoxia Visualized in Imageable Syngeneic B-ALL Mouse Model. Frontiers in Oncology, 2020, 10, 991.	1.3	11
36	Vascular Regulation of Hematopoietic Stem Cell Homeostasis, Regeneration, and Aging. Current Stem Cell Reports, 2021, 7, 194-203.	0.7	9

JASON M BUTLER

#	Article	IF	CITATIONS
37	Spleen hypoplasia leads to abnormal stress hematopoiesis in mice with loss of Pbx homeoproteins in splenic mesenchyme. Journal of Anatomy, 2016, 229, 153-169.	0.9	8
38	Blood making: learning what to put into the dish. F1000Research, 2020, 9, 38.	0.8	6
39	Derivation and characterization of a UCP1 reporter human ES cell line. Stem Cell Research, 2018, 30, 12-21.	0.3	5
40	Distinct Bone Marrow Blood Vessels Differentially Regulate Normal and Malignant Hematopoietic Stem and Progenitor Cells. Blood, 2015, 126, 664-664.	0.6	1
41	In Vivo Selection and Long-Term Engraftment Of Hematopoietic Stem Cells Generated Via Vascular Niche Induction Of Nonhuman Primate Induced Pluripotent Stem Cells. Blood, 2013, 122, 466-466.	0.6	1
42	Vascular Niche-Derived Angiocrine Factors Specify and Maintain Hematopoietic Stem Cells. Blood, 2015, 126, SCI-25-SCI-25.	0.6	1
43	Direct Conversion of Adult Endothelial Cells into Immunecompetent Long-Term Engraftable Clinically Scalable Hematopoietic Stem Cells: Pathway to Therapeutic Translation. Blood, 2016, 128, 372-372.	0.6	1
44	Hematopoietic Support by Endothelium. Blood, 2010, 116, SCI-45-SCI-45.	0.6	0
45	AGM-Derived Endothelial Cells and Notch Ligands Provide Embryonic Hematopoietic Stem Cell-Supportive Niches In Vitro. Blood, 2013, 122, 1167-1167.	0.6	0
46	Notch Signaling By Either Notch1 or Notch2 Mediates Expansion of AGM-Derived Long-Term HSC Populations in Vitro. Blood, 2014, 124, 2897-2897.	0.6	0
47	NF-Kb Inhibition in Endothelial Cells Enhances the Self-Renewal and Regeneration of the Hematopoietic System. Blood, 2014, 124, 353-353.	0.6	0
48	Endothelial Cells Promote Endogenous Thymic Regeneration after Injury Via BMP4 Signaling. Blood, 2014, 124, 2429-2429.	0.6	0
49	Rejuvenation of Aged Vascular Niches to Enhance Hematopoietic Function. Blood, 2015, 126, 781-781.	0.6	0
50	Production of BMP4 By Endothelial Cells Is Crucial for Endogenous Thymic Regeneration. Blood, 2015, 126, 637-637.	0.6	0
51	Mechanisms Governing Endogenous Thymic Regeneration. Blood, 2017, 130, 66-66.	0.6	0
52	Inhibition of Endothelial mTOR Drives Hematopoietic Stem Cell Aging. Blood, 2018, 132, 1289-1289.	0.6	0
53	Endothelial MAPK Activation Disrupts Hematopoiesis By Depleting Plasma SCGF. Blood, 2018, 132, 1290-1290.	0.6	0
54	Aging of the Vascular Niche Enhances Leukemia-Initiating Cell Metabolic Switch. Blood, 2018, 132, 871-871.	0.6	0