
## Sabine Rosner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7998577/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Genetic parameters of growth and wood quality traits inPicea abies. Scandinavian Journal of Forest<br>Research, 2004, 19, 14-29.                                                                                                | 1.4 | 171       |
| 2  | Do waterâ€limiting conditions predispose <scp>N</scp> orway spruce to bark beetle attack?. New Phytologist, 2015, 205, 1128-1141.                                                                                               | 7.3 | 156       |
| 3  | Uptake of Water via Branches Helps Timberline Conifers Refill Embolized Xylem in Late Winter   Â. Plant<br>Physiology, 2014, 164, 1731-1740.                                                                                    | 4.8 | 142       |
| 4  | Wood traits related to size and life history of trees in a Panamanian rainforest. New Phytologist, 2017, 213, 170-180.                                                                                                          | 7.3 | 80        |
| 5  | Extraction of features from ultrasound acoustic emissions: a tool to assess the hydraulic vulnerability of Norway spruce trunkwood?. New Phytologist, 2006, 171, 105-116.                                                       | 7.3 | 76        |
| 6  | Defence reactions of Norway spruce against bark beetles and the associated fungus Ceratocystis<br>polonica in secondary pure and mixed species stands. Forest Ecology and Management, 2002, 159, 73-86.                         | 3.2 | 68        |
| 7  | Resin canal traits relevant for constitutive resistance of Norway spruce against bark beetles:<br>environmental and genetic variability. Forest Ecology and Management, 2004, 200, 77-87.                                       | 3.2 | 61        |
| 8  | Wood density as a screening trait for drought sensitivity in Norway spruce. Canadian Journal of<br>Forest Research, 2014, 44, 154-161.                                                                                          | 1.7 | 58        |
| 9  | Norway spruce physiological and anatomical predisposition to dieback. Forest Ecology and Management, 2014, 322, 27-36.                                                                                                          | 3.2 | 57        |
| 10 | Hydraulic and mechanical properties of young Norway spruce clones related to growth and wood structure. Tree Physiology, 2007, 27, 1165-1178.                                                                                   | 3.1 | 53        |
| 11 | Using the CODIT model to explain secondary metabolites of xylem in defence systems of temperate trees against decay fungi. Annals of Botany, 2020, 125, 701-720.                                                                | 2.9 | 50        |
| 12 | Shrinkage processes in standard-size Norway spruce wood specimens with different vulnerability to cavitation. Tree Physiology, 2009, 29, 1419-1431.                                                                             | 3.1 | 46        |
| 13 | Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood.<br>Tree Physiology, 2008, 28, 1179-1188.                                                                                        | 3.1 | 45        |
| 14 | Cavitation in dehydrating xylem of Picea abies: energy properties of ultrasonic emissions reflect tracheid dimensions. Tree Physiology, 2011, 31, 59-67.                                                                        | 3.1 | 45        |
| 15 | Transpiration deficits increase host susceptibility to bark beetle attack: Experimental observations<br>and practical outcomes for Ips typographus hazard assessment. Agricultural and Forest Meteorology,<br>2018, 263, 69-89. | 4.8 | 45        |
| 16 | Comparaison de méthodes de quantification des pertes de conductivité hydraulique chez l'épicéa.<br>Annals of Forest Science, 2008, 65, 502-502.                                                                                 | 2.0 | 42        |
| 17 | Prediction of hydraulic conductivity loss from relative water loss: new insights into water storage of tree stems and branches. Physiologia Plantarum, 2019, 165, 843-854.                                                      | 5.2 | 41        |
| 18 | Novel Hydraulic Vulnerability Proxies for a Boreal Conifer Species Reveal That Opportunists May Have<br>Lower Survival Prospects under Extreme Climatic Events. Frontiers in Plant Science, 2016, 7, 831.                       | 3.6 | 35        |

SABINE ROSNER

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Hydraulic and mechanical dysfunction of Norway spruce sapwood due to extreme summer drought in<br>Scandinavia. Forest Ecology and Management, 2018, 409, 527-540.                                                  | 3.2 | 33        |
| 20 | Wood density as a proxy for vulnerability to cavitation: Size matters. The Journal of Plant Hydraulics, 0, 4, e001.                                                                                                | 1.0 | 31        |
| 21 | An improved method and data analysis for ultrasound acoustic emissions and xylem vulnerability in conifer wood. Physiologia Plantarum, 2012, 146, 184-191.                                                         | 5.2 | 30        |
| 22 | Hydraulic and biomechanical optimization in norway spruce trunkwood $\hat{a} \in \hat{a}$ a review. IAWA Journal, 2013, 34, 365-390.                                                                               | 2.7 | 30        |
| 23 | Xylem cavitation resistance can be estimated based on timeâ€dependent rate of acoustic emissions. New<br>Phytologist, 2015, 208, 625-632.                                                                          | 7.3 | 29        |
| 24 | Osmotic potential of Norway spruce [ Picea abies (L.) Karst.] secondary phloem in relation to anatomy.<br>Trees - Structure and Function, 2001, 15, 472-482.                                                       | 1.9 | 25        |
| 25 | Summer temperatures reach the thermal tolerance threshold of photosynthetic decline in temperate conifers. Plant Biology, 2022, 24, 1254-1261.                                                                     | 3.8 | 23        |
| 26 | Radial shrinkage and ultrasound acoustic emissions of fresh versus pre-dried Norway spruce sapwood. Trees - Structure and Function, 2010, 24, 931-940.                                                             | 1.9 | 21        |
| 27 | The potential of Mid-Infrared spectroscopy for prediction of wood density and vulnerability to embolism in woody angiosperms. Tree Physiology, 2019, 39, 503-510.                                                  | 3.1 | 19        |
| 28 | Genetic parameters for spiral-grain angle in two 19-year-old clonal Norway spruce trials. Annals of<br>Forest Science, 2002, 59, 551-556.                                                                          | 2.0 | 18        |
| 29 | Winter Embolism and Recovery in the Conifer Shrub Pinus mugo L Forests, 2019, 10, 941.                                                                                                                             | 2.1 | 17        |
| 30 | The significance of lenticels for successful Pityogenes chalcographus (Coleoptera: Scolytidae)<br>invasion of Norway spruce trees [ Picea abies (Pinaceae)]. Trees - Structure and Function, 2002, 16,<br>497-503. | 1.9 | 16        |
| 31 | STRUCTURAL CHANGES IN PRIMARY LENTICELS OF NORWAY SPRUCE OVER THE SEASONS. IAWA Journal, 2003, 24, 105-116.                                                                                                        | 2.7 | 16        |
| 32 | A new type of vulnerability curve: is there truth in vine?. Tree Physiology, 2015, 35, 410-414.                                                                                                                    | 3.1 | 16        |
| 33 | Within-ring movement of free water in dehydrating Norway spruce sapwood visualized by neutron radiography. Holzforschung, 2012, 66, 751-756.                                                                       | 1.9 | 13        |
| 34 | The conifer-curve: fast prediction of hydraulic conductivity loss and vulnerability to cavitation.<br>Annals of Forest Science, 2019, 76, 1.                                                                       | 2.0 | 13        |
| 35 | Physiological and anatomical responses to drought stress differ between two larch species and their hybrid. Trees - Structure and Function, 2021, 35, 1467-1484.                                                   | 1.9 | 13        |
| 36 | Hydraulic efficiency compromises compression strength perpendicular to the grain in Norway spruce trunkwood. Trees - Structure and Function, 2011, 25, 289-299.                                                    | 1.9 | 12        |

SABINE ROSNER

| #  | Article                                                                                                                                                     | IF  | CITATIONS    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|
| 37 | Sap flux – a real time assessment of health status in Norway spruce. Scandinavian Journal of Forest<br>Research, 2016, 31, 450-457.                         | 1.4 | 11           |
| 38 | A synoptic view on intra-annual density fluctuations in Abies alba. Dendrochronologia, 2020, 64,<br>125781.                                                 | 2.2 | 10           |
| 39 | Lignin Quantification of Papyri by TGA—Not a Good Idea. Molecules, 2021, 26, 4384.                                                                          | 3.8 | 10           |
| 40 | OUP accepted manuscript. , 2019, 7, coz012.                                                                                                                 |     | 10           |
| 41 | Container volume affects drought experiments in grapevines: Insights on xylem anatomy and time of dehydration. Physiologia Plantarum, 2021, 173, 2181-2190. | 5.2 | 8            |
| 42 | Zur Überwinterungsstrategie der Kleinen Fichtenblattwespe, <i>Pristiphora abietina</i> Christ. (Hym.,) Tj ETQq                                              | 0   | /Qverlock 10 |

| 43 | SAP FLOW DYNAMICS AS A DIAGNOSTIC TOOL IN NORWAY SPRUCE. Acta Horticulturae, 2013, , 31-36.                                                                           | 0.2 | 7 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 44 | Within-ring variability of wood structure and its relationship to drought sensitivity in Norway spruce trunks. IAWA Journal, 2019, 40, 288-310.                       | 2.7 | 7 |
| 45 | Time-frequency features of grapevine's xylem acoustic emissions for detection of drought stress.<br>Computers and Electronics in Agriculture, 2020, 178, 105797.      | 7.7 | 7 |
| 46 | Breathing life into trees: the physiological and biomechanical functions of lenticels. IAWA Journal, 2022, 43, 234-262.                                               | 1.0 | 7 |
| 47 | Hydraulic traits of Norway spruce sapwood estimated by Fourier transform near-infrared spectroscopy (FT-NIR). Canadian Journal of Forest Research, 2015, 45, 625-631. | 1.7 | 6 |
| 48 | Q-NET – a new scholarly network on quantitative wood anatomy. Dendrochronologia, 2021, 70,<br>125890.                                                                 | 2.2 | 6 |
| 49 | DIFFERENTIAL TRANSLUCENCE METHOD AS A SUPPLEMENT TO SAP FLOW MEASUREMENT IN NORWAY SPRUCE WITH SYMPTOMS OF TOP DIEBACK. Acta Horticulturae, 2013, , 285-292.          | 0.2 | 6 |
| 50 | Ready for Screening: Fast Assessable Hydraulic and Anatomical Proxies for Vulnerability to Cavitation of Young Conifer Sapwood. Forests, 2021, 12, 1104.              | 2.1 | 4 |
| 51 | Chronology of hydraulic vulnerability in trunk wood of conifer trees with and without symptoms of top dieback. The Journal of Plant Hydraulics, 0, 3, e001.           | 1.0 | 4 |
| 52 | Digital image analysis of radial shrinkage of fresh spruce (Picea abiesL.) wood. Wood Material Science<br>and Engineering, 2011, 6, 2-6.                              | 2.3 | 3 |
| 53 | Verifying sensitivity of a sensor system for logging xylem's acoustic emissions related to drought stress. , 2021, , .                                                |     | 1 |