Pavel A Strizhak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7998314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of temperature on viscosity, stability, and microstructure of water-in-biodiesel microemulsions. Journal of Dispersion Science and Technology, 2023, 44, 987-999.	1.3	1
2	Atomization behavior of composite liquid fuels based on typical coal processing wastes. Fuel Processing Technology, 2022, 225, 107037.	3.7	19
3	Temperature recording of the ice–water system using planar laser induced fluorescence. Experimental Thermal and Fluid Science, 2022, 131, 110532.	1.5	5
4	Experimental research of liquid droplets colliding with solid particles in a gaseous medium. Chemical Engineering Research and Design, 2022, 177, 200-209.	2.7	10
5	Influence of the component composition of extinguishing fluids on the droplet distribution in an aerosol cloud. Powder Technology, 2022, 395, 838-849.	2.1	6
6	Normalizing anthropogenic gas emissions from the combustion of industrial waste as part of fuel slurries. Fuel, 2022, 313, 122653.	3.4	6
7	Puffing/micro-explosion in composite multi-component droplets. International Journal of Heat and Mass Transfer, 2022, 184, 122210.	2.5	7
8	Effects of water subdroplet location on the start of puffing/micro-explosion in composite fuel-water droplets. International Journal of Heat and Mass Transfer, 2022, 186, 122466.	2.5	15
9	Emissions from the combustion of high-potential slurry fuels. Environmental Science and Pollution Research, 2022, 29, 37989-38005.	2.7	4
10	Combustion, Pyrolysis, and Gasification of Waste-Derived Fuel Slurries, Low-Grade Liquids, and High-Moisture Waste: Review. Applied Sciences (Switzerland), 2022, 12, 1039.	1.3	19
11	The transition boundaries between interaction regimes of liquid droplets colliding in a gas. Chemical Engineering Research and Design, 2022, 179, 201-226.	2.7	2
12	Ratio of water/fuel concentration in a group of composite droplets on high-temperature heating. Applied Thermal Engineering, 2022, 206, 118107.	3.0	6
13	Disintegration of Free-falling Liquid Droplets, Jets, and Arrays in Air. Microgravity Science and Technology, 2022, 34, 1.	0.7	5
14	Key Areas of Gas Hydrates Study: Review. Energies, 2022, 15, 1799.	1.6	11
15	Puffing/micro-explosion in droplets of rapeseed oil with coal micro-particles and water. Fuel, 2022, 316, 123009.	3.4	5
16	Time evolution of composite fuel/water droplet radii before the start of puffing/micro-explosion. International Journal of Heat and Mass Transfer, 2022, 191, 122838.	2.5	14
17	Effect of adding a liquid combustible component and wood biomass to slurry fuel on spraying characteristics. Powder Technology, 2022, 403, 117382.	2.1	2
18	Droplet-droplet, droplet-particle, and droplet-substrate collision behavior. Powder Technology, 2022, 403, 117371.	2.1	16

#	Article	IF	CITATIONS
19	Mathematical modeling of heat transfer in a droplet of coal-water fuel leading to its fragmentation. Applied Thermal Engineering, 2022, 212, 118628.	3.0	4
20	Identification of slurry fuel components in a spray flow. Fuel, 2022, 323, 124353.	3.4	5
21	Rheology, ignition, and combustion performance of coal-water slurries: Influence of sequence and methods of mixing. Fuel, 2022, 322, 124294.	3.4	12
22	Modeling of a Double Gas Hydrate Particle Ignition. Applied Sciences (Switzerland), 2022, 12, 5953.	1.3	8
23	Prospects of Using Gas Hydrates in Power Plants. Energies, 2022, 15, 4188.	1.6	4
24	Influence of Compartment Fire Behavior at Ignition and Combustion Development Stages on the Operation of Fire Detectors. Fire, 2022, 5, 84.	1.2	6
25	The Effect of Impurities on Water Droplet Collision Regimes and Behavior. Microgravity Science and Technology, 2022, 34, .	0.7	1
26	The necessary water discharge density to suppress fires in premises. Powder Technology, 2022, 408, 117707.	2.1	6
27	Ecological Assessment of Industrial Waste as a High-Potential Component of Slurry Fuels. Waste and Biomass Valorization, 2021, 12, 1659-1676.	1.8	Ο
28	Using Planar Laser Induced Fluorescence and Micro Particle Image Velocimetry to study the heating of a droplet with different tracers and schemes of attaching it on a holder. International Journal of Thermal Sciences, 2021, 159, 106603.	2.6	15
29	Convective heat transfer in droplets of fuel microemulsions during conductive heating. Experimental Thermal and Fluid Science, 2021, 120, 110258.	1.5	2
30	Secondary atomization of water-in-oil emulsion drops impinging on a heated surface in the film boiling regime. International Journal of Heat and Mass Transfer, 2021, 165, 120672.	2.5	19
31	Micro-explosive droplet fragmentation of environmentally promising coal-water slurries containing petrochemicals. Fuel, 2021, 283, 118949.	3.4	15
32	Coal and petroleum-derived components for high-moisture fuel slurries. Energy, 2021, 219, 119606.	4.5	2
33	Combustion and emission behavior of different waste fuel blends in a laboratory furnace. Fuel, 2021, 285, 119098.	3.4	22
34	Combustion of Wet Coal Processing Waste and Coal Slime as Components of Fuel Slurries. Combustion Science and Technology, 2021, 193, 1120-1139.	1.2	4
35	Micro-explosion of droplets containing liquids with different viscosity, interfacial and surface tension. Chemical Engineering Research and Design, 2021, 165, 478.	2.7	1
36	Micro-explosion of a two-component droplet: How the initial temperature of the water core affects the breakup conditions and outcomes. Powder Technology, 2021, 382, 378-387.	2.1	6

Pavel A Strizhak

#	Article	IF	CITATIONS
37	Child droplets from micro-explosion of emulsion and immiscible two-component droplets. International Journal of Heat and Mass Transfer, 2021, 169, 120931.	2.5	19
38	Synergistic Effect of the Fuel Microemulsion Characteristics on Drop Interaction with a Hot Wall. Energy & Fuels, 2021, 35, 8042-8050.	2.5	4
39	Experimental study of miscibility of liquids in binary droplet collisions. Chemical Engineering Research and Design, 2021, 168, 1-12.	2.7	12
40	Determining water content in a liquid fuel by the luminosity of its droplet. Chemical Engineering Science, 2021, 233, 116415.	1.9	6
41	Puffing/micro-explosion in rapeseed oil/water droplets: The effects of coal micro-particles in water. Fuel, 2021, 289, 119814.	3.4	30
42	The critical atomization conditions of high-potential fire suppressant droplets in an air flow. Powder Technology, 2021, 384, 505-521.	2.1	7
43	Experimental and numerical studies on the temperature in a pendant water droplet heated in the hot air. International Journal of Thermal Sciences, 2021, 163, 106855.	2.6	5
44	Collisions of water droplets in the high-temperature air. International Journal of Heat and Mass Transfer, 2021, 170, 121011.	2.5	10
45	Lab-Scale Combustion of High-Moisture Fuels From Peat, Coal Waste and Milled Lignite. Waste and Biomass Valorization, 2021, 12, 6619-6634.	1.8	3
46	Investigating regularities of gas hydrate ignition on a heated surface: Experiments and modelling. Combustion and Flame, 2021, 228, 78-88.	2.8	25
47	Anthropogenic emissions from the combustion of composite coal-based fuels. Science of the Total Environment, 2021, 772, 144909.	3.9	19
48	Experimental research of the vapor zone between two coalescing droplets of heated water. International Communications in Heat and Mass Transfer, 2021, 126, 105410.	2.9	4
49	Physicochemical features of the effect of special water-based fire retardants on forest materials. Fire Safety Journal, 2021, 123, 103371.	1.4	10
50	Mathematical Simulation of Ignition of an Organic Coal–Water Fuel Droplet. Journal of Engineering Physics and Thermophysics, 2021, 94, 949-962.	0.2	1
51	Fragmentation of heated droplets of coal-water slurries containing petrochemicals. Applied Thermal Engineering, 2021, 195, 117190.	3.0	6
52	Experimental research into the ignition and combustion characteristics of slurry fuels based on dry and wet coal processing waste. Journal of the Energy Institute, 2021, 97, 213-224.	2.7	8
53	Puffing/micro-explosion of two closely spaced composite droplets in tandem: Experimental results and modelling. International Journal of Heat and Mass Transfer, 2021, 176, 121449.	2.5	19
54	Collisions of Liquid Droplets in a Gaseous Medium under Conditions of Intense Phase Transformations: Review. Energies, 2021, 14, 6150.	1.6	4

#	Article	IF	CITATIONS
55	Interaction between droplets of solutions in a heated gaseous medium. Powder Technology, 2021, 390, 86-96.	2.1	6
56	Composition of a gas and ash mixture formed during the pyrolysis and combustion of coal-water slurries containing petrochemicals. Environmental Pollution, 2021, 285, 117390.	3.7	31
57	Impact of scattered radiation on thermal radiation shielding by water curtains. Chemical Engineering Research and Design, 2021, 154, 278-290.	2.7	10
58	Convection velocities in gas and liquid phases during fragmentation of droplets. Experimental Thermal and Fluid Science, 2021, 129, 110476.	1.5	4
59	Comparison of micro-explosive fragmentation regimes and characteristics of two- and three-component droplets on a heated substrate. International Journal of Heat and Mass Transfer, 2021, 179, 121651.	2.5	2
60	Relative energy efficiency indicators calculated for high-moisture waste-based fuel blends using multiple-criteria decision-making. Energy, 2021, 234, 121257.	4.5	13
61	Puffing/micro-explosion in composite fuel/water droplets heated in flames. Combustion and Flame, 2021, 233, 111599.	2.8	25
62	Temperature measurements in a string of three closely spaced droplets before the start of puffing/micro-explosion: Experimental results and modelling. International Journal of Heat and Mass Transfer, 2021, 181, 121837.	2.5	8
63	Composition of gas produced from the direct combustion and pyrolysis of biomass. Chemical Engineering Research and Design, 2021, 156, 43-56.	2.7	45
64	Critical Conditions for the Ignition of a Gel Fuel under Different Heating Schemes. Energies, 2021, 14, 7083.	1.6	0
65	Mathematical Definition of the Transition Boundaries Between Collision Regimes of Droplets. Journal of Engineering Physics and Thermophysics, 2021, 94, 1147-1159.	0.2	0
66	Collisions of Two-Phase Liquid Droplets in a Heated Gas Medium. Entropy, 2021, 23, 1476.	1.1	2
67	Differences of two-component droplets breakup at the high temperatures. Journal of the Energy Institute, 2020, 93, 351-366.	2.7	10
68	Child droplets produced by micro-explosion and puffing of two-component droplets. Applied Thermal Engineering, 2020, 164, 114501.	3.0	13
69	Dispersed phase structure and micro-explosion behavior under different schemes of water-fuel droplets heating. Fuel, 2020, 259, 116241.	3.4	30
70	Thermal stability control of the water-in-diesel microemulsion fuel produced by using a nonionic surfactant combined with aliphatic alcohols. Journal of Dispersion Science and Technology, 2020, 41, 771-778.	1.3	19
71	Cooling of the hot steel balls by salt –water solutions and water-based suspensions: Subcooled pool boiling experiments. International Journal of Thermal Sciences, 2020, 148, 106164.	2.6	7
72	Experimental research into the characteristics of child droplets formed due to collisions of liquid fragments in a gas. Powder Technology, 2020, 363, 122-134.	2.1	3

#	Article	IF	CITATIONS
73	Intensity dependent features of the light-induced gasification of the waste-derived coal-water compositions. Renewable Energy, 2020, 146, 1667-1675.	4.3	8
74	Heat exchange of an evaporating water droplet in a high-temperature environment. International Journal of Thermal Sciences, 2020, 150, 106227.	2.6	22
75	Using Planar Laser Induced Fluorescence to determine temperature fields of drops, films, and aerosols. Measurement: Journal of the International Measurement Confederation, 2020, 153, 107439.	2.5	7
76	Measurement of the temperature of water solutions, emulsions, and slurries droplets using planar-laser-induced fluorescence. Measurement Science and Technology, 2020, 31, 035201.	1.4	5
77	Effects of plant additives on the concentration of sulfur and nitrogen oxides in the combustion products of coal-water slurries containing petrochemicals. Environmental Pollution, 2020, 258, 113682.	3.7	36
78	Additives to Coal-Based Fuel Pellets for the Intensification of Combustion and Reduction in Anthropogenic Gas Emissions. Applied Sciences (Switzerland), 2020, 10, 6689.	1.3	4
79	Measuring temperature of emulsion and immiscible two-component drops until micro-explosion using two-color LIF. International Journal of Heat and Mass Transfer, 2020, 163, 120505.	2.5	11
80	An experimental investigation into ignition and combustion of groups of slurry fuel droplets containing high concentrations of water. Fuel Processing Technology, 2020, 210, 106553.	3.7	20
81	Application of the laser induced phosphorescence method to the analysis of temperature distribution in heated and evaporating droplets. International Journal of Heat and Mass Transfer, 2020, 163, 120421.	2.5	11
82	Influence of the Method of Water Supply to the Zone of a Forest Fire on the Efficiency of its Extinguishing. Journal of Engineering Physics and Thermophysics, 2020, 93, 1460-1469.	0.2	3
83	Energy analysis of secondary droplet atomization schemes. International Communications in Heat and Mass Transfer, 2020, 117, 104666.	2.9	14
84	Suppression of Flaming Combustion and Thermal Decomposition of Condensed Matter at Different Heights of the Beginning of Water Array Motion. Combustion, Explosion and Shock Waves, 2020, 56, 83-91.	0.3	3
85	Micro-explosion and puffing of a group of two-component droplets. Applied Thermal Engineering, 2020, 181, 116023.	3.0	10
86	Secondary atomization of gas-saturated liquid droplets as a result of their collisions and micro-explosion. Chemical Engineering Research and Design, 2020, 162, 200-211.	2.7	9
87	Mathematical Simulation of the Heat and Mass Transfer in the Movement of Liquid Droplets in a Gas Medium Under the Conditions of their Intense Phase Transformations. Journal of Engineering Physics and Thermophysics, 2020, 93, 1055-1076.	0.2	6
88	A new approach to modelling micro-explosions in composite droplets. International Journal of Heat and Mass Transfer, 2020, 161, 120238.	2.5	34
89	Influence of the Concentration of Water Droplets in an Aerosol Cloud on the Characteristics of their Collisional Interaction. Journal of Engineering Physics and Thermophysics, 2020, 93, 298-309.	0.2	6
90	Promising components of waste-derived slurry fuels. Journal of the Energy Institute, 2020, 93, 2044-2054.	2.7	3

#	Article	IF	CITATIONS
91	Intensification of Vaporization and Secondary Atomization of Droplets of Fire-Extinguishing Liquid Composition. Technical Physics Letters, 2020, 46, 122-125.	0.2	7
92	Influence of viscosity, surface and interfacial tensions on the liquid droplet collisions. Chemical Engineering Science, 2020, 220, 115639.	1.9	37
93	Comparing the ignition parameters of promising coal fuels. Chemical Engineering Research and Design, 2020, 139, 273-282.	2.7	17
94	Microexplosive Fragmentation of a Group of Inhomogeneous Fuel Droplets. Technical Physics Letters, 2020, 46, 473-476.	0.2	0
95	Modeling the micro-explosion of miscible and immiscible liquid droplets. Acta Astronautica, 2020, 171, 69-82.	1.7	14
96	Impact of micro-explosive atomization of fuel droplets on relative performance indicators of their combustion. Fuel Processing Technology, 2020, 201, 106334.	3.7	39
97	The Impact of Single- and Multicomponent Liquid Drops on a Heated Wall: Child Droplets. Applied Sciences (Switzerland), 2020, 10, 942.	1.3	10
98	Properties and Phase Behavior of Water-in-Diesel Microemulsion Fuels Stabilized by Nonionic Surfactants in Combination with Aliphatic Alcohol. Energy & Fuels, 2020, 34, 2135-2142.	2.5	21
99	Temperature Fields of the Droplets and Gases Mixture. Applied Sciences (Switzerland), 2020, 10, 2212.	1.3	2
100	Collision of water droplets with different initial temperatures. Powder Technology, 2020, 367, 820-830.	2.1	12
101	Micro-explosion of droplets containing liquids with different viscosity, interfacial and surface tension. Chemical Engineering Research and Design, 2020, 158, 129-147.	2.7	22
102	Comparative analysis of factors affecting differences in the concentrations of gaseous anthropogenic emissions from coal and slurry fuel combustion. Fuel, 2020, 270, 117581.	3.4	26
103	EFFECTS OF TARGET AND PROJECTILE PARAMETERS ON COLLISION CHARACTERISTICS OF WATER DROPLETS. Atomization and Sprays, 2020, 30, 171-187.	0.3	3
104	Experimental Studies of the Localization of Combustion of Forest Fuel Material Using a Water Barrier Line. , 2020, , 335-340.		0
105	A comparison of ignition characteristics of slurry fuels prepared using coal processing waste and finely divided coal. Journal of the Energy Institute, 2019, 92, 1167-1177.	2.7	10
106	Experimental research into collisions of homogeneous and multi-component liquid droplets. Chemical Engineering Research and Design, 2019, 150, 84-98.	2.7	14
107	Collisions between Liquid Drops of Various Shapes in a Gas Flow. Technical Physics Letters, 2019, 45, 267-270.	0.2	5
108	Disruption of colliding liquid droplets with different surface geometries. Powder Technology, 2019, 355, 526-534.	2.1	4

7

#	Article	IF	CITATIONS
109	Temperature and convection velocities in two-component liquid droplet until micro-explosion. Experimental Thermal and Fluid Science, 2019, 109, 109862.	1.5	20
110	Atomization of promising multicomponent fuel droplets by their collisions. Fuel, 2019, 255, 115751.	3.4	27
111	Characteristics of "Bounce―of Interacting Water Droplets. Technical Physics, 2019, 64, 796-801.	0.2	5
112	Effective incineration of fuel-waste slurries from several related industries. Environmental Research, 2019, 176, 108559.	3.7	36
113	Experimental Determination of the Fire-Break Size and Specific Water Consumption for Effective Containment and Complete Suppression of the Front Propagation of a Typical Local Wildfire. Journal of Applied Mechanics and Technical Physics, 2019, 60, 68-79.	0.1	3
114	Recovery of waste-derived and low-grade components within fuel slurries. Energy, 2019, 183, 1266-1277.	4.5	15
115	Gas-Vapor Mixture Temperature in the Near-Surface Layer of a Rapidly-Evaporating Water Droplet. Entropy, 2019, 21, 803.	1.1	0
116	Protective Lines for Suppressing the Combustion Front of Forest Fuels: Experimental Research. Chemical Engineering Research and Design, 2019, 131, 73-88.	2.7	3
117	Comparing the integral characteristics of secondary droplet atomization under different situations. International Communications in Heat and Mass Transfer, 2019, 108, 104329.	2.9	16
118	The influence of the wall microtexture on functional properties and heat transfer. Journal of Molecular Liquids, 2019, 294, 111670.	2.3	21
119	Characteristics of the Aerosol Cloud Formed during Microexplosive Fragmentation of a Two-Component Liquid Drop. Technical Physics Letters, 2019, 45, 805-808.	0.2	4
120	Effect of the Angular and Linear Parameters of Interaction of Water Droplets of Various Shapes on the Characteristics of Their Collisions. Journal of Applied Mechanics and Technical Physics, 2019, 60, 650-660.	0.1	3
121	Combined techniques of secondary atomization of multi-component droplets. Chemical Engineering Science, 2019, 209, 115199.	1.9	23
122	Micro-explosion and autoignition of composite fuel/water droplets. Combustion and Flame, 2019, 210, 479-489.	2.8	39
123	Analysis of statistical data on drop collisions in an aerosol flow during experiments. EPJ Web of Conferences, 2019, 196, 00013.	0.1	11
124	Numerical simulation of gel fuel gas-phase ignition by a local source of limited heat content. Acta Astronautica, 2019, 163, 44-53.	1.7	7
125	Characteristics of the Child-Droplets Emerged by Micro-Explosion of the Heterogeneous Droplets Exposed to Conductive, Convective and Radiative Heating. Microgravity Science and Technology, 2019, 31, 541-555.	0.7	4
126	Comparative Analysis of Interaction Modes of Two Droplets and of a Large Population in an Aerosol Cloud. Doklady Physics, 2019, 64, 97-101.	0.2	2

#	Article	IF	CITATIONS
127	Experimental Study of Regularities in Suppression of Flame Combustion and Thermal Decomposition of Forest Combustible Materials Using Aerosols of Different Dispersiveness. Journal of Engineering Thermophysics, 2019, 28, 43-55.	0.6	3
128	Interaction of Water Droplets in Air Flow at Different Degrees of Flow Turbulence. Journal of Engineering Thermophysics, 2019, 28, 1-13.	0.6	9
129	Collision Behavior of Heterogeneous Liquid Droplets. Microgravity Science and Technology, 2019, 31, 487-503.	0.7	18
130	Prospects of thermal power plants switching from traditional fuels to coal-water slurries containing petrochemicals. Science of the Total Environment, 2019, 671, 568-577.	3.9	32
131	Comparison of the characteristics of micro-explosion and ignition of two-fluid water-based droplets, emulsions and suspensions, moving in the high-temperature oxidizer medium. Acta Astronautica, 2019, 160, 258-269.	1.7	34
132	Breakup and explosion of droplets of two immiscible fluids and emulsions. International Journal of Thermal Sciences, 2019, 142, 30-41.	2.6	54
133	Conditions and Characteristics of High-Temperature Processes of Ebullition and Disintegration of Droplets of Water Emulsions. Journal of Engineering Physics and Thermophysics, 2019, 92, 249-259.	0.2	1
134	Heating, evaporation, fragmentation, and breakup of multi-component liquid droplets when heated in air flow. Chemical Engineering Research and Design, 2019, 146, 22-35.	2.7	23
135	Explosive disintegration of two-component drops under intense conductive, convective, and radiant heating. Applied Thermal Engineering, 2019, 152, 409-419.	3.0	36
136	SECONDARY ATOMIZATION OF FIREFIGHTING LIQUID DROPLETS BY THEIR COLLISIONS. Atomization and Sprays, 2019, 29, 429-454.	0.3	6
137	Ignition of Slurry Fuel Droplets with Different Heating Conditions. Energies, 2019, 12, 4553.	1.6	5
138	Interaction of Water and Suspension Droplets during Their Collisions in a Gas Medium. Theoretical Foundations of Chemical Engineering, 2019, 53, 769-780.	0.2	5
139	Effect of the Heating Scheme of Heterogeneous Droplets on the Characteristics of Micro-Explosion Fragmentation. Doklady Physics, 2019, 64, 384-388.	0.2	Ο
140	Relative combustion efficiency of composite fuels based on of wood processing and oil production wastes. Energy, 2019, 169, 18-28.	4.5	24
141	Temperature and Velocity of the Gas–Vapor Mixture in the Trace of Several Evaporating Water Droplets. Journal of Heat Transfer, 2019, 141, .	1.2	6
142	Measuring the temperature of a rapidly evaporating water droplet by Planar Laser Induced Fluorescence. Measurement: Journal of the International Measurement Confederation, 2019, 135, 231-243.	2.5	18
143	Burnout rates of fuel slurries containing petrochemicals, coals and coal processing waste. Powder Technology, 2019, 343, 204-214.	2.1	28
144	Municipal solid waste recycling by burning it as part of composite fuel with energy generation. Journal of Environmental Management, 2019, 231, 896-904.	3.8	33

#	Article	IF	CITATIONS
145	Advantages of switching coal-burning power plants to coal-water slurries containing petrochemicals. Applied Thermal Engineering, 2019, 147, 998-1008.	3.0	37
146	Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects. Renewable and Sustainable Energy Reviews, 2019, 103, 384-398.	8.2	108
147	Impact of environmentally attractive additives on the ignition delay times of slurry fuels: Experimental study. Fuel, 2019, 238, 275-288.	3.4	27
148	Experimental researches of the effect of vegetable oil addition on the emissions during combustion of coal liquid fuels. Thermal Science, 2019, 23, 1237-1249.	0.5	4
149	The ignition dynamics of the water-filled fuel compositions. Fuel Processing Technology, 2018, 174, 26-32.	3.7	16
150	Using Planar Laser Induced Fluorescence to explore the mechanism of the explosive disintegration of water emulsion droplets exposed to intense heating. International Journal of Thermal Sciences, 2018, 127, 126-141.	2.6	49
151	Mathematical model simulating the ignition of a droplet of coal water slurry containing petrochemicals. Energy, 2018, 150, 262-275.	4.5	25
152	Influence of the initial temperature of coal water slurries containing petrochemicals on their ignition characteristics. Applied Thermal Engineering, 2018, 138, 591-602.	3.0	9
153	Computational modeling of the combustion of coal water slurries containing petrochemicals. Fuel, 2018, 220, 109-119.	3.4	17
154	Experimental and numerical study of coal dust ignition by a hot particle. Applied Thermal Engineering, 2018, 133, 774-784.	3.0	35
155	Environmental benefits and drawbacks of composite fuels based on industrial wastes and different ranks of coal. Journal of Hazardous Materials, 2018, 347, 359-370.	6.5	29
156	Major gas emissions from combustion of slurry fuels based on coal, coal waste, and coal derivatives. Journal of Cleaner Production, 2018, 177, 284-301.	4.6	74
157	Unsteady temperature fields of evaporating water droplets exposed to conductive, convective and radiative heating. Applied Thermal Engineering, 2018, 131, 340-355.	3.0	62
158	Evaporation of Water Droplets Moving Through High-Temperature Gases. Journal of Engineering Physics and Thermophysics, 2018, 91, 97-103.	0.2	2
159	Vaporization of water droplets with non-metallic inclusions of different sizes in a high-temperature gas. International Journal of Thermal Sciences, 2018, 127, 360-372.	2.6	7
160	Water drops with graphite particles triggering the explosive liquid breakup. Experimental Thermal and Fluid Science, 2018, 96, 154-161.	1.5	10
161	Coal-water slurries containing petrochemicals to solve problems of air pollution by coal thermal power stations and boiler plants: An introductory review. Science of the Total Environment, 2018, 613-614, 1117-1129.	3.9	78
162	Energy efficiency and environmental aspects of the combustion of coal-water slurries with and without petrochemicals. Journal of Cleaner Production, 2018, 172, 1730-1738.	4.6	47

#	Article	IF	CITATIONS
163	Using Planar Laser Induced Fluorescence to explain the mechanism of heterogeneous water droplet boiling and explosive breakup. Experimental Thermal and Fluid Science, 2018, 91, 103-116.	1.5	30
164	Light-induced gasification of the coal-processing waste: Possible products and regimes. Fuel, 2018, 212, 347-352.	3.4	10
165	Experimental evaluation of main emissions during coal processing waste combustion. Environmental Pollution, 2018, 233, 299-305.	3.7	20
166	Motion of water droplets in the counter flow of high-temperature combustion products. Heat and Mass Transfer, 2018, 54, 193-207.	1.2	12
167	Impact of Forest Fuels on Gas Emissions in Coal Slurry Fuel Combustion. Energies, 2018, 11, 2491.	1.6	16
168	Impact of Holder Materials on the Heating and Explosive Breakup of Two-Component Droplets. Energies, 2018, 11, 3307.	1.6	34
169	Conditions for Explosive Disintegration of Inhomogeneous Water Droplets on High-Temperature Heating. Journal of Engineering Physics and Thermophysics, 2018, 91, 1496-1504.	0.2	0
170	Effect of Specific Water Consumption on Suppression of Combustion and Thermal Decomposition of Forest Combustible Materials. Doklady Physics, 2018, 63, 508-512.	0.2	1
171	USING PLANAR LASER-INDUCED FLUORESCENCE TO STUDY THE PHASE TRANSFORMATIONS OF TWO-COMPONENT LIQUID AND SUSPENSION DROPLETS. Interfacial Phenomena and Heat Transfer, 2018, 6, 377-389.	0.3	1
172	Explosive Decay of Emulsion Drops Based on Water and Oil Products under Conditions of High-Temperature Purification of Liquids. Doklady Physics, 2018, 63, 462-466.	0.2	4
173	Industrial Waste as Part of Coal–Water Slurry Fuels. Energy & Fuels, 2018, 32, 11398-11410.	2.5	27
174	An explosive disintegration of heated fuel droplets with adding water. Chemical Engineering Research and Design, 2018, 140, 292-307.	2.7	25
175	Extinguishing a Ground Forest Fire by Spraying Water Over its Edge. Journal of Engineering Physics and Thermophysics, 2018, 91, 758-765.	0.2	4
176	Deformation of a Droplet of an Organic Water—Coal Fuel in a Gas Flow. Journal of Applied Mechanics and Technical Physics, 2018, 59, 653-661.	0.1	4
177	Temperature and velocity fields of the gas-vapor flow near evaporating water droplets. International Journal of Thermal Sciences, 2018, 134, 337-354.	2.6	21
178	Research of temperature fields and convection velocities in evaporating water droplets using Planar Laser-Induced Fluorescence and Particle Image Velocimetry. Experimental Thermal and Fluid Science, 2018, 97, 392-407.	1.5	58
179	Differences in ignition and combustion characteristics of waste-derived oil-water emulsions and coal-water slurries containing petrochemicals. Fuel Processing Technology, 2018, 179, 407-421.	3.7	39
180	The influence of key factors on the heat and mass transfer of a sessile droplet. Experimental Thermal and Fluid Science, 2018, 99, 59-70.	1.5	54

#	Article	IF	CITATIONS
181	The influence of liquid plant additives on the anthropogenic gas emissions from the combustion of coal-water slurries. Environmental Pollution, 2018, 242, 31-41.	3.7	28
182	Ignition of Fuel Slurries Based on Waste Products of Coal Processing and Oil Refining. Combustion, Explosion and Shock Waves, 2018, 54, 376-384.	0.3	7
183	A Mathematical Model for Processes in Coal–Water Slurries Containing Petrochemicals under Heating. Energy & Fuels, 2018, 32, 8789-8802.	2.5	9
184	Heating and evaporation of suspended water droplets: Experimental studies and modelling. International Journal of Heat and Mass Transfer, 2018, 127, 92-106.	2.5	76
185	Experimental Assessment of the Mass of Ash Residue During the Burning of Droplets of a Composite Liquid Fuel. Journal of Engineering Physics and Thermophysics, 2018, 91, 420-432.	0.2	Ο
186	Suppression of the Thermal Decomposition Reaction of Forest Combustible Materials in Large-Area Fires. Journal of Engineering Physics and Thermophysics, 2018, 91, 411-419.	0.2	9
187	Energetic and ecological effect of small amount of metalline powders used for doping waste-derived fuels. Combustion and Flame, 2018, 193, 335-343.	2.8	4
188	Environmental, economic and energetic benefits of using coal and oil processing waste instead of coal to produce the same amount of energy. Energy Conversion and Management, 2018, 174, 175-187.	4.4	65
189	The role of convection in gas and liquid phases at droplet evaporation. International Journal of Thermal Sciences, 2018, 134, 421-439.	2.6	60
190	Environmental aspects of converting municipal solid waste into energy as part of composite fuels. Journal of Cleaner Production, 2018, 201, 1029-1042.	4.6	33
191	Effect of macroscopic porosity onto the ignition of the waste-derived fuel droplets. Energy, 2017, 119, 1152-1158.	4.5	19
192	Coagulation and splitting of droplets of coal-water slurry containing petrochemicals and their effect on ignition characteristics. Applied Thermal Engineering, 2017, 116, 266-277.	3.0	8
193	Effect of a Small Amount of Aluminum Powder on the Combustion of the Waste-Derived Coal–Water Slurry. Energy & Fuels, 2017, 31, 1044-1046.	2.5	3
194	Gas temperature in the trace of water droplets streamlined by hot air flow. International Journal of Multiphase Flow, 2017, 91, 184-193.	1.6	14
195	Experimental Study of the Influence of the Concentration of Organic Water-Coal Fuel Components on the Integral Ignition Characteristics. Journal of Engineering Physics and Thermophysics, 2017, 90, 217-226.	0.2	1
196	The light-induced gasification of waste-derived fuel. Fuel, 2017, 197, 28-30.	3.4	18
197	Prediction of minimum water amount to stop thermal decomposition of forest fuel. Journal of Engineering Thermophysics, 2017, 26, 139-145.	0.6	1
198	Environmentally and economically efficient utilization of coal processing waste. Science of the Total Environment, 2017, 598, 21-27.	3.9	35

#	Article	IF	CITATIONS
199	Combustion of the waste-derived fuel compositions metallized by aluminium powder. Combustion and Flame, 2017, 182, 14-19.	2.8	11
200	lgnition of droplets of coal–water–oil mixtures based on coke and semicoke. Coke and Chemistry, 2017, 60, 28-36.	0.0	3
201	Environmental indicators of the combustion of prospective coal water slurry containing petrochemicals. Journal of Hazardous Materials, 2017, 338, 148-159.	6.5	83
202	Numerical study of the effect of burnout on the ignition characteristics of polymer under local heating. Combustion, Explosion and Shock Waves, 2017, 53, 176-186.	0.3	3
203	Maximum combustion temperature for coal-water slurry containing petrochemicals. Energy, 2017, 120, 34-46.	4.5	33
204	Sawdust as ignition intensifier of coal water slurries containing petrochemicals. Energy, 2017, 140, 69-77.	4.5	17
205	Evaporation, boiling and explosive breakup of oil–water emulsion drops under intense radiant heating. Chemical Engineering Research and Design, 2017, 127, 72-80.	2.7	34
206	Evaporation of aqueous suspension drops with ground admixtures in the region of high-temperature combustion products. Theoretical Foundations of Chemical Engineering, 2017, 51, 468-475.	0.2	1
207	Heat and mass transfer at gas-phase ignition of grinded coal layer by several metal particles heated to a high temperature. Thermophysics and Aeromechanics, 2017, 24, 593-604.	0.1	6
208	How to improve efficiency of using water when extinguishing fires through the explosive breakup of drops in a flame: Laboratory and field tests. International Journal of Thermal Sciences, 2017, 121, 398-409.	2.6	26
209	Emissions in the combustion of coal and coal-processing wastes. Coke and Chemistry, 2017, 60, 171-176.	0.0	3
210	Perspectives of the Use of Rapeseed Oil for the Doping of Waste-Based Industrial Fuel. Energy & Fuels, 2017, 31, 10116-10120.	2.5	12
211	Application of the planar laser-induced fluorescence method to determine the temperature field ofwater droplets under intensive heating. Journal of Engineering Thermophysics, 2017, 26, 325-338.	0.6	3
212	Breakup of heterogeneous water drop immersed in high-temperature air. Applied Thermal Engineering, 2017, 127, 1340-1345.	3.0	37
213	Growth of the surface area of separated liquid fragments during high-temperature fragmentation of an inhomogeneous liquid drop. Technical Physics Letters, 2017, 43, 558-561.	0.2	3
214	Ignition of composite liquid fuel droplets based on coal and oil processing waste by heated air flow. Journal of Cleaner Production, 2017, 165, 1445-1461.	4.6	34
215	Planar laser-induced fluorescence diagnostics of water droplets heating and evaporation at high-temperature. Applied Thermal Engineering, 2017, 127, 141-156.	3.0	71
	Deceleration and Reversal in the Direction of Motion of Water Droplets in a Counterflow of		

Deceleration and Reversal in the Direction of Motion of Water Droplets in a Counterflow of Combustion Products of Flammable Liquids. Chemical and Petroleum Engineering (English Translation) Tj ETQq0 0 **0.1**gBT /Overlock 10 T

#	Article	IF	CITATIONS
217	Experimental estimation of evaporation rates of water droplets in high-temperature gases. Journal of Applied Mechanics and Technical Physics, 2017, 58, 889-894.	0.1	2
218	Experimental investigation of trajectory of motion of water drops in a flow of high-temperature gases. Theoretical Foundations of Chemical Engineering, 2017, 51, 658-666.	0.2	1
219	Reducing the flue gases temperature by individual droplets, aerosol, and large water batches. Experimental Thermal and Fluid Science, 2017, 88, 301-316.	1.5	13
220	Characteristics of the ignition of the drops of organic coal–water fuels based on waste oils and industrial oils. Solid Fuel Chemistry, 2017, 51, 188-194.	0.2	11
221	Exprimental Study of Liquid Drop Surface Transformation in Air Within a Group of Successive Deformation Cycles. Chemical and Petroleum Engineering (English Translation of Khimicheskoe I) Tj ETQq1 1 0.78	4 д.1 4 rgВТ	Ðverlock I
222	On the Mechanism of Interaction of Two Water Droplets Moving Successively at a Small Distance from Each Other in a High-Temperature Gas Medium. Journal of Engineering Physics and Thermophysics, 2017, 90, 134-139.	0.2	1
223	Experimental Study of the Ignition of Single Drops of Coal Suspensions and Coal Particles in the Oxidizer Flow. Journal of Engineering Physics and Thermophysics, 2017, 90, 198-205.	0.2	4
224	Initiation of Combustion of a Gel-Like Condensed Substance by a Local Source of Limited Power. Journal of Engineering Physics and Thermophysics, 2017, 90, 206-216.	0.2	1
225	Specific features in the transformation of liquid drops during their motion in a gas medium. Theoretical Foundations of Chemical Engineering, 2017, 51, 359-367.	0.2	0
226	Ignition of an organic water–coal fuel droplet floating in a heated-air flow. Thermal Engineering (English Translation of Teploenergetika), 2017, 64, 53-60.	0.4	2
227	Initiation of organic coal–water fuel droplet burning in a vortex combustion chamber. Doklady Physics, 2017, 62, 176-179.	0.2	0
228	Mechanism of heat transfer in heterogeneous droplets of water under intense radiant heating. Journal of Engineering Thermophysics, 2017, 26, 183-196.	0.6	4
229	Effect of the fractional composition of the solid components of coal–water fuel on the characteristics of ignition and combustion. Solid Fuel Chemistry, 2017, 51, 88-94.	0.2	4
230	Characteristics of the ignition of organic coal–water fuels for boiler installations. Solid Fuel Chemistry, 2017, 51, 95-100.	0.2	3
231	Experimental Study of the Conditions for Quenching Forest Combustible Materials. Journal of Engineering Physics and Thermophysics, 2017, 90, 511-520.	0.2	4
232	Predictive Determination of the Integral Characteristics of Evaporation of Water Droplets in Gas Media with a Varying Temperature. Journal of Engineering Physics and Thermophysics, 2017, 90, 615-624.	0.2	17
233	Experimental Determination of Conditions for the Explosive Fragmentation of a Heterogeneous Water Droplet in Heating in a High-Temperature Gas Medium. Journal of Engineering Physics and Thermophysics, 2017, 90, 625-633.	0.2	1
234	Studying gas temperature variation upon aerosol injection. Technical Physics Letters, 2017, 43, 301-304.	0.2	3

#	Article	IF	CITATIONS
235	Simulation of the process of coal dust ignition in the presence of metal particles. Solid Fuel Chemistry, 2017, 51, 24-31.	0.2	1
236	Conditions of Stable Ignition of Coal-Water Slurry Containing Petrochemicals Based on Carbon Residue of Tire Pyrolysis. Chemical and Petroleum Engineering (English Translation of Khimicheskoe I) Tj ETQq0 () 0 øgBT /C	Dveolock 10 Tf
237	Ignition of a polymer propellant of hybrid rocket motor by a hot particle. Acta Astronautica, 2017, 133, 387-396.	1.7	7
238	Temperature measurement in the trace of water droplet when heating by hot air. Experimental Thermal and Fluid Science, 2017, 81, 256-264.	1.5	14
239	Combustion of the coal-water slurry doped by combustible and non-combustible micro-particles. Applied Thermal Engineering, 2017, 113, 1021-1023.	3.0	7
240	Technoeconomic Analysis of Prospects of Use of Organic Coal-Water Fuels of Various Component Compositions. Chemical and Petroleum Engineering (English Translation of Khimicheskoe I Neftyanoe) Tj ETQq0	0 @rgBT /	Ov e5 lock 10 1
241	Amount of Water Sufficient to Suppress Thermal Decomposition of Forest Fuel. Journal of Mechanics, 2017, 33, 703-711.	0.7	7
242	Technoeconomic Prerequisites for Use of Water-Coal-Organic Chemical Slurry Fuels in Large Power Plants. Chemical and Petroleum Engineering (English Translation of Khimicheskoe I Neftyanoe) Tj ETQq0 0 0 rgB	T /@værloc	k 10 Tf 50 45
243	Limited transverse sizes of a droplet cloud under disintegration of a water mass during its fall from a great height. Doklady Physics, 2017, 62, 333-336.	0.2	5
244	Determination of the Volume of Water for Suppressing the Thermal Decomposition of Forest Combustibles. Journal of Engineering Physics and Thermophysics, 2017, 90, 789-796.	0.2	6
245	Ignition of a Droplet of Composite Liquid Fuel in a Vortex Combustion Chamber. Journal of Physics: Conference Series, 2017, 891, 012224.	0.3	1
246	Experimental study of the suppression of flaming combustion and thermal decomposition of model ground and crown forest fires. Combustion, Explosion and Shock Waves, 2017, 53, 678-688.	0.3	20
247	Transformation of Solution and Suspension Masses during Their Free Fall in Air. Theoretical Foundations of Chemical Engineering, 2017, 51, 1055-1062.	0.2	3
248	The High-Temperature Evaporation of Water Droplets in a Gaseous Medium. Technical Physics, 2017, 62, 1908-1911.	0.2	5
249	Environmental Potential of Using Coal-Processing Waste as the Primary and Secondary Fuel for Energy Providers. Energies, 2017, 10, 405.	1.6	31
250	Movement of water droplets in a layer of thermally decomposable forest fuel. MATEC Web of Conferences, 2017, 115, 08011.	0.1	0
251	DISINTEGRATION OF LARGE BALLS OF WATER-BASED LIQUIDS IN FREE FALL THROUGH HIGH-TEMPERATURE GASES. Atomization and Sprays, 2017, 27, 893-911.	0.3	18
252	Low temperature combustion of organic coal-water fuel droplets containing petrochemicals while soaring in a combustion chamber model. Thermal Science, 2017, 21, 1057-1066.	0.5	7

#	Article	IF	CITATIONS
253	Influence of the shape of soaring particle based on coal-water slurry containing petrochemicals on ignition characteristics. Thermal Science, 2017, 21, 1399-1408.	0.5	8
254	New Approach to Study the Ignition Processes of Organic Coal-Water Fuels in an Oxidizer Flow. EPJ Web of Conferences, 2016, 110, 01055.	0.1	1
255	Low-temperature ignition of droplets of suspension organic water–carbon fuels. Doklady Physics, 2016, 61, 321-326.	0.2	0
256	Conditions of Intensive Evaporation of Heterogeneous Water Droplet in High Temperature Gas Environment. Journal of Mechanics, 2016, 32, 349-355.	0.7	3
257	Experimental estimation of the influence of the droplet evaporation process on the conditions of movement in an oncoming high-temperature gas flow. High Temperature, 2016, 54, 555-559.	0.1	1
258	Influence of the "Self-Radiation" of Combustion Products on the Intensity of Evaporation of an Inhomogeneous Water Droplet in the Flame. Journal of Engineering Physics and Thermophysics, 2016, 89, 799-807.	0.2	2
259	Determination of temperature and concentration of a vapor–gas mixture in a wake of water droplets moving through combustion products. Journal of Engineering Thermophysics, 2016, 25, 337-351.	0.6	9
260	Features of water droplet deformation during motion in a gaseous medium under conditions of moderate and high temperatures. High Temperature, 2016, 54, 722-730.	0.1	4
261	Initiation of combustion of coal particles coated with a water film in a high-temperature air flow. Combustion, Explosion and Shock Waves, 2016, 52, 550-561.	0.3	8
262	Determination of Maintaining Time of Temperature Traces of Aerosol Droplet Water Flows During Motion in a Flame. EPJ Web of Conferences, 2016, 110, 01001.	0.1	0
263	Effect of the shape of an organic water–coal fuel particle on the condition and characteristics of its ignition in a hot air flow. Russian Journal of Physical Chemistry B, 2016, 10, 935-945.	0.2	3
264	Ignition of the Coal–Water Slurry Containing Petrochemicals and Charcoal. Energy & Fuels, 2016, 30, 10886-10892.	2.5	8
265	Peculiarities of heat transfer in water droplets with a solid inclusion during heating in a high-temperature gas medium. Journal of Engineering Thermophysics, 2016, 25, 45-54.	0.6	Ο
266	Determination of Sectional Constancy of Organic Coal-Water Fuel Compositions. EPJ Web of Conferences, 2016, 110, 01016.	0.1	4
267	The Review of Ignition and Combustion Processes for Water-Coal Fuels. EPJ Web of Conferences, 2016, 110, 01024.	0.1	14
268	Ignition of promising coal-water slurry containing petrochemicals: Analysis of key aspects. Fuel Processing Technology, 2016, 148, 224-235.	3.7	81
269	The ranges of the aerodynamic drag coefficient of water droplets moving through typical gas media. Journal of Engineering Thermophysics, 2016, 25, 32-44.	0.6	1
270	Organic coal-water fuel: Problems and advances (Review). Thermal Engineering (English Translation) Tj ETQq0 () 0 rgBT /O	verlock 10 Tf !

#	Article	IF	CITATIONS
271	Influence of the preparation of organic coal–water fuel on its ignition. Coke and Chemistry, 2016, 59, 137-145.	0.0	7
272	Using ignition of coal dust produced by different types of mechanical treatment under conditions of rapid heating. Combustion, Explosion and Shock Waves, 2016, 52, 326-328.	0.3	13
273	Ignition Characteristics of Coal–Water Slurry Containing Petrochemicals Based on Coal of Varying Degrees of Metamorphism. Energy & Fuels, 2016, 30, 6808-6816.	2.5	24
274	Characteristic Features of Boiling and Vaporization of Heterogeneous Liquid Drops in High-Temperature Gaseous Medium. Chemical and Petroleum Engineering (English Translation of) Tj ETQq0 0 0 1	rgB ō. ‡Overl	loade 10 Tf 50
275	The effect of the petrochemicals at the ignition of the coal-water slurry droplet. Applied Thermal Engineering, 2016, 106, 351-353.	3.0	11
276	Movement and evaporation of water droplets under conditions typical for heat-exchange chambers of contact water heaters. Thermal Engineering (English Translation of Teploenergetika), 2016, 63, 666-673.	0.4	2
277	Ignition of a floating droplet of organic coal–water fuel. Doklady Physics, 2016, 61, 270-274.	0.2	1
278	Researches of Advanced Thermal Insulating Materials for Improving the Building Energy Efficiency. Key Engineering Materials, 2016, 683, 617-625.	0.4	1
279	Simultaneous ignition of several droplets of coal–water slurry containing petrochemicals in oxidizer flow. Fuel Processing Technology, 2016, 152, 22-33.	3.7	23
280	Physics of suppression of thermal decomposition of forest fuel using surface water film. Journal of Engineering Thermophysics, 2016, 25, 443-448.	0.6	3
281	The effect of gas and water droplet temperature on characteristics of water-droplet deformation at moderate velocities of droplet movement. Theoretical Foundations of Chemical Engineering, 2016, 50, 746-756.	0.2	0
282	Differences in the ignition characteristics of coal–water slurries and composite liquid fuel. Solid Fuel Chemistry, 2016, 50, 88-101.	0.2	32
283	Ignition of the drops of coal–water fuel in a flow of air. Solid Fuel Chemistry, 2016, 50, 163-166.	0.2	8
284	Ignition of a coal particle on a heated surface. Solid Fuel Chemistry, 2016, 50, 213-219.	0.2	8
285	Ash residue from droplets of organic coal–water fuels burned at different oxidant temperatures. Coke and Chemistry, 2016, 59, 178-185.	0.0	4
286	Thermal decomposition of coal and coal-enrichment wastes. Coke and Chemistry, 2016, 59, 264-270.	0.0	9
287	On The Laws of Liquid Drop Deformation in Gas Flows. Chemical and Petroleum Engineering (English) Tj ETQq1	1 0.784314	4 rgBT /Overla
288	Evolution of temperature of a droplet of liquid composite fuel interacting with heated airflow. Thermophysics and Aeromechanics, 2016, 23, 887-898.	0.1	4

#	Article	IF	CITATIONS
289	Effect of the thermophysical properties of the material of a local energy source on conditions and characteristics of ignition of metallized composite propellants. Russian Journal of Physical Chemistry B, 2016, 10, 946-952.	0.2	1
290	Ignition of coal suspensions based on water of different quality. Coke and Chemistry, 2016, 59, 437-440.	0.0	15
291	Deformation of a water shell during free fall in air. Doklady Physics, 2016, 61, 195-200.	0.2	4
292	Evaporation of a water drop with a solid opaque inclusion moving through a high-temperature gaseous medium. Technical Physics Letters, 2016, 42, 248-251.	0.2	6
293	Features of transformation of water projectiles moving through high-temperature combustion products. Technical Physics Letters, 2016, 42, 256-259.	0.2	3
294	Transformation of a Water Slug in Free Fall Under the Conditions of Exposure to an Air Flow Orthogonal to the Direction of the Slug Motion. Journal of Engineering Physics and Thermophysics, 2016, 89, 864-869.	0.2	2
295	Difference in the conditions and characteristics of evaporation of inhomogeneous water drops in a high-temperature gaseous medium. Technical Physics, 2016, 61, 1303-1311.	0.2	2
296	Experimental determination of the retention time of reduced temperature of gas–vapor mixture in trace of water droplets moving in counterflow of combustion products. Technical Physics Letters, 2016, 42, 644-648.	0.2	1
297	Experimental Investigation of the Change in Temperature at the Center of a Water Droplet in the Process of Evaporation in Heated Air. Journal of Engineering Physics and Thermophysics, 2016, 89, 548-552.	0.2	0
298	Integral characteristics of water droplet evaporation in high-temperature combustion products of typical flammable liquids using SP and IPI methods. International Journal of Thermal Sciences, 2016, 108, 218-234.	2.6	55
299	The ignition parameters of the coal-water slurry droplets at the different methods of injection into the hot oxidant flow. Applied Thermal Engineering, 2016, 107, 10-20.	3.0	37
300	Influence of droplet concentration on evaporation in a high-temperature gas. International Journal of Heat and Mass Transfer, 2016, 96, 20-28.	2.5	52
301	Water Droplet With Carbon Particles Moving Through High-Temperature Gases. Journal of Heat Transfer, 2016, 138, .	1.2	23
302	Minimum temperatures for sustainable ignition of coal water slurry containing petrochemicals. Applied Thermal Engineering, 2016, 96, 534-546.	3.0	50
303	Influence of organic coal-water fuel composition on the characteristics of sustainable droplet ignition. Fuel Processing Technology, 2016, 143, 60-68.	3.7	66
304	The integral characteristics of the deceleration and entrainment of water droplets by the counter flow of high-temperature combustion products. Experimental Thermal and Fluid Science, 2016, 75, 54-65.	1.5	29
305	Experimental Study of the Effects of Collision of Water Droplets in a Flow of High-Temperature Gases. Journal of Engineering Physics and Thermophysics, 2016, 89, 100-111.	0.2	22
306	Evaporation of Water Droplets in a High-Temperature Gaseous Medium. Journal of Engineering Physics and Thermophysics, 2016, 89, 141-151.	0.2	39

#	Article	IF	CITATIONS
307	Burning Properties of Slurry Based on Coal and Oil Processing Waste. Energy & Fuels, 2016, 30, 3441-3450.	2.5	101
308	Experimental and numerical study of heat transfer and oxidation reaction during ignition of diesel fuel by a hot particle. Fuel, 2016, 175, 105-115.	3.4	32
309	Study of ignition, combustion, and production of harmful substances upon burning solid organic fuel at a test bench with a vortex chamber. Thermal Engineering (English Translation of) Tj ETQq1 1 0.784314 rgE	3T¢Qverlc	ock410 Tf 50
310	Experimental investigation of consecutive water droplets falling down through high-temperature gas zone. International Journal of Heat and Mass Transfer, 2016, 95, 184-197.	2.5	23
311	Heat and mass transfer at the ignition of vapors of volatile liquid fuels by hot metal core: Experimental study and modelling. International Journal of Heat and Mass Transfer, 2016, 92, 1182-1190.	2.5	11
312	Evaporation, boiling and explosive breakup of heterogeneous droplet in a high-temperature gas. International Journal of Heat and Mass Transfer, 2016, 92, 360-369.	2.5	54
313	HEAT TRANSFER UNDER IGNITION OF DROPLET OF COMPOSITE LIQUID FUEL MADE OF COAL, WATER AND OIL IN AN OXIDANT FLOW. Advances and Applications in Fluid Mechanics, 2016, 19, 157-168.	0.1	2
314	THE INFLUENCE OF DROPLET SIZES OF COAL-WATER SLURRY CONTAINING PETROCHEMICALS ON INTEGRAL IGNITION CHARACTERISTICS. JP Journal of Heat and Mass Transfer, 2016, 13, 265-276.	0.1	2
315	Experimental investigation of evaporation enhancement for water droplet containing solid particles in flaming combustion area. Thermal Science, 2016, 20, 131-141.	0.5	19
316	Intensive evaporation and boiling of a heterogeneous liquid droplet with an explosive disintegration in high-temperature gas area. Thermal Science, 2016, 20, 541-553.	0.5	8
317	TRANSFORMATION FEATURES OF LIQUID MASSIFS AND JETS FALLING IN GAS ENVIRONMENT. Advances and Applications in Fluid Mechanics, 2016, 19, 35-46.	0.1	0
318	Characteristics of Evaporation and Entrainment of Spray Flow Droplets in High-Temperature Oil Combustion Products: Insight into Academic Research Experience. Procedia, Social and Behavioral Sciences, 2015, 206, 321-326.	0.5	0
319	Deformation of liquid drops moving in a gas medium. Technical Physics, 2015, 60, 1443-1447.	0.2	5
320	Aerodynamics of a promising vortex furnace design. Technical Physics Letters, 2015, 41, 727-730.	0.2	15
321	Statistical analysis of consequences of collisions between two water droplets upon their motion in a high-temperature gas flow. Technical Physics Letters, 2015, 41, 840-843.	0.2	26
322	Hot Surface Ignition of A Composite Fuel Droplet. MATEC Web of Conferences, 2015, 23, 01063.	0.1	6
323	Numerical Research of the Measurement Error of Temperature Thermocouples with the Isolated Seal. MATEC Web of Conferences, 2015, 23, 01017.	0.1	0
324	Research of Integral Characteristics of Process of Heattransfer in the Sensitive Element of Resistive Temperature Detector. MATEC Web of Conferences, 2015, 37, 01005.	0.1	0

#	Article	IF	CITATIONS
325	Ignition of a composite propellant by a hot particle under conditions of a nonideal thermal contact. Russian Journal of Physical Chemistry B, 2015, 9, 631-636.	0.2	2
326	Influence of the form of a solid inclusion in an inhomogeneous liquid droplet on the conditions of its "explosive―destruction under intense heat exchange. Doklady Physics, 2015, 60, 428-431.	0.2	3
327	Features of the Transformation of Small Water Droplets and Large Water Bombs in Free Fall. MATEC Web of Conferences, 2015, 23, 01034.	0.1	Ο
328	Effect of the content of salt admixtures on integral characteristics of evaporation of water drops moving through high-temperature gas media. Journal of Engineering Thermophysics, 2015, 24, 237-246.	0.6	1
329	Conditions of explosive evaporation at the phase interface in an inhomogeneous droplet. Technical Physics Letters, 2015, 41, 810-813.	0.2	13
330	Weber numbers at various stages of water projectile transformation during free fall in air. Technical Physics Letters, 2015, 41, 1019-1022.	0.2	7
331	Criterion expressions for conditions and deceleration and subsequent entrainment of water drops by high-temperature gases. Technical Physics, 2015, 60, 1310-1315.	0.2	5
332	Predictive Modeling of Gas-Phase Ignition of Products of the Thermal Decomposition of Coal. Chemical and Petroleum Engineering (English Translation of Khimicheskoe I Neftyanoe) Tj ETQq0 0 0 rgBT /Over	loc lø.1 0 Tf	501457 Td (M
333	Regularities in Evaporation and Carryover of Polydisperse Water Flow Droplets During Motion Through High-Temperature Gases. Chemical and Petroleum Engineering (English Translation of) Tj ETQq1 1 0.78	43 1):4 1rgB7	[/Qverlock 10
334	Influence of the Temperature of Gases on the Deformation Characteristics of Moving Water Droplets. Journal of Engineering Physics and Thermophysics, 2015, 88, 797-805.	0.2	1
335	Deformation of Water Droplets at Various Initial Temperatures During Motion Through Cooled Air. Chemical and Petroleum Engineering (English Translation of Khimicheskoe I Neftyanoe) Tj ETQq1 1 0.784314 rg	BT (Overlo	ock đ0 Tf 50 3
336	Analysis of the Characteristics of the Retardation and Entrainment of Droplets in a Polydisperse Water Flow by High-Temperature Gases Under Conditions of Intense Phase Transformations. Journal of Engineering Physics and Thermophysics, 2015, 88, 937-947.	0.2	5
337	Evaporation of Water in the Process of Movement of its Large Masses Through a High-Temperature Gas Medium. Journal of Engineering Physics and Thermophysics, 2015, 88, 1145-1153.	0.2	3
338	Evaporation Features of Water Droplets with Typical Subsoil Impurities During the Motion Through High-Temperature Gas Environment: Research Experience at Tomsk Polytechnic University. Procedia, Social and Behavioral Sciences, 2015, 206, 327-332.	0.5	2
339	Water droplet deformation under the motion in gas area with subsonic velocities. EPJ Web of Conferences, 2015, 82, 01002.	0.1	Ο
340	Experimental determination of water droplet "strain cycles―characteristic in the gas area. EPJ Web of Conferences, 2015, 82, 01022.	0.1	0
341	Forecasting investigation of mode fire hazard of electrical overload of cable lines. EPJ Web of Conferences, 2015, 82, 01031.	0.1	3
342	Numerical research of heat and mass transfer at the ignition of system "fabric – combustible liquid – oxidant―by the local energy source. EPJ Web of Conferences, 2015, 82, 01038.	0.1	0

#	Article	IF	CITATIONS
343	Research of energy efficiency direct-heating systems with sequential connection of space heaters with different methods of heat consumption regulation. EPJ Web of Conferences, 2015, 82, 01047.	0.1	1
344	Cross-correlation video recording of gas-vapor-droplet two-phase flows. EPJ Web of Conferences, 2015, 82, 01059.	0.1	2
345	Liquid fuel ignition features during its spilling on the metallic substrate heated up to high temperatures. EPJ Web of Conferences, 2015, 82, 01065.	0.1	Ο
346	Investigation of energy efficiency of innovate thermal insulating materials and their influence on the building heat regime. MATEC Web of Conferences, 2015, 23, 01025.	0.1	1
347	Explosive Breakup of a Water Droplet with a Nontransparent Solid Inclusion Heated in a High-Temperature Gaseous Medium. MATEC Web of Conferences, 2015, 23, 01064.	0.1	1
348	Difference Of Evaporation and Boiling for Heterogeneous Water Droplets in a High-Temperature Gas. MATEC Web of Conferences, 2015, 37, 01027.	0.1	1
349	Change in Ignition Characteristics Of Composite Liquid Fuel Droplet While Varying the Combustible Liquid Content. MATEC Web of Conferences, 2015, 37, 01029.	0.1	Ο
350	Determination of necessary time of measurements of surface thermocouples depending on conditions of technological processes. EPJ Web of Conferences, 2015, 82, 01061.	0.1	6
351	Water evaporation particularities in the process of forest fire extinguishing. EPJ Web of Conferences, 2015, 82, 01014.	0.1	0
352	Experimental evaluation of the effectiveness of water mist automated fire extinguishing systems for oil transportation. IOP Conference Series: Earth and Environmental Science, 2015, 27, 012063.	0.2	2
353	Numerical Modeling of Physic-Chemical Processes of Multicore Cable in the Polymerization. MATEC Web of Conferences, 2015, 23, 01001.	0.1	1
354	The Difference between the Integral Characteristics of Two and Three Water Droplets Moving Sequentially through High-Temperature Combustion Products and Air. MATEC Web of Conferences, 2015, 23, 01062.	0.1	0
355	Determination of Characteristic Peroids of Suppression of Thermal Decomposition Reaction of Forest Fuel Material by Specialized Software. MATEC Web of Conferences, 2015, 37, 01022.	0.1	1
356	Mathematical Modeling of Heat and Mass Transfer Processes with Chemical Reaction at Polymeric Material Ignition by Several Small-Size Hot Particles. Mathematical Problems in Engineering, 2015, 2015, 1-8.	0.6	4
357	Fire Danger of Interaction Processes of Local Sources with a Limited Energy Capacity and Condensed Substances. MATEC Web of Conferences, 2015, 37, 01065.	0.1	0
358	Numerical Analysis of Integral Characteristics for the Condenser Setups of Independent Power-Supply Sources with the Closed-Looped Thermodynamic Cycle. Mathematical Problems in Engineering, 2015, 2015, 1-7.	0.6	1
359	Experimental investigation of the influence of the liquid drop size and velocity on the parameters of drop deformation in air. Technical Physics, 2015, 60, 1119-1125.	0.2	10
360	Effect of the volume concentration of a set of water droplets moving through high-temperature gases on the temperature in the wake. Journal of Applied Mechanics and Technical Physics, 2015, 56, 558-568.	0.1	12

#	Article	IF	CITATIONS
361	Water droplet deformation in gas stream: Impact of temperature difference between liquid and gas. International Journal of Heat and Mass Transfer, 2015, 85, 1-11.	2.5	71
362	Experimentally determining the sizes of water flow droplets entrained by high-temperature gases. Thermal Engineering (English Translation of Teploenergetika), 2015, 62, 586-592.	0.4	3
363	Effect of Errors of Determination of Thermochemical and Thermophysical Characteristics of Insulating Materials on Integral Process Parameters of their Polymerization. Chemical and Petroleum Engineering (English Translation of Khimicheskoe I Neftyanoe Mashinostroenie), 2015, 51, 164-170.	0.1	1
364	Influence of the initial parameters of liquid droplets on their evaporation process in a region of high-temperature gas. Journal of Applied Mechanics and Technical Physics, 2015, 56, 248-256.	0.1	2
365	Numerical research of heat and mass transfer during low-temperature ignition of a coal particle. Thermal Science, 2015, 19, 285-294.	0.5	32
366	Estimation of the numerical values of the evaporation constants of water droplets moving in a high-temperature gas flow. High Temperature, 2015, 53, 254-258.	0.1	44
367	Experimental determination of times, amplitudes, and lengths of cycles of water droplet deformation in air. Technical Physics Letters, 2015, 41, 128-131.	0.2	12
368	Mathematical simulation of the ignition of coal particles in airflow. Solid Fuel Chemistry, 2015, 49, 73-79.	0.2	22
369	Low-temperature ignition of coal particles in an airflow. Russian Journal of Physical Chemistry B, 2015, 9, 242-249.	0.2	24
370	Determination of the critical conditions of heat transfer in a LED. EPJ Web of Conferences, 2015, 82, 01036.	0.1	1
371	Determination of surface tension and contact angle by the axisymmetric bubble and droplet shape analysis. Thermophysics and Aeromechanics, 2015, 22, 297-303.	0.1	27
372	Capillary waves at microdroplet coalescence with a liquid layer. Thermophysics and Aeromechanics, 2015, 22, 515-518.	0.1	8
373	Experimental estimation of characteristic times of the existence of liquid drops in the form of a sphere and ellipse upon their movement in a gas environment under the conditions of moderate weber numbers. Theoretical Foundations of Chemical Engineering, 2015, 49, 457-466.	0.2	3
374	Experimental investigation of mixtures and foreign inclusions in water droplets influence on integral characteristics of their evaporation during motion through high-temperature gas area. International Journal of Thermal Sciences, 2015, 88, 193-200.	2.6	80
375	VARIATION OF HEATING AND IGNITION CONDITIONS FOR COMPOSITE LIQUID FUEL DROPLETS ON ADDITION OF DRESSED COAL. JP Journal of Heat and Mass Transfer, 2015, 13, 71-80.	0.1	2
376	THE INFLUENCE OF ORGANIC WASTE CONTENT ON CHARACTERISTICS OF INERT HEATING AND IGNITION OF COMPOSITE LIQUID FUEL DROPLETS. JP Journal of Heat and Mass Transfer, 2015, 13, 81-92.	0.1	2
377	NUMERICAL INVESTIGATION OF HEAT AND MASS TRANSFER PROCESSES DURING MOTION OF THE SINGLE WATER DROPLET IN HIGH-TEMPERATURE GAS AREA. JP Journal of Heat and Mass Transfer, 2015, 11, 75-91.	0.1	1
378	Influence of radiative heat and mass transfer mechanism in system "water droplet-high-temperature gases―on integral characteristics of liquid evaporation. Thermal Science, 2015, 19, 1541-1552.	0.5	8

#	Article	IF	CITATIONS
379	DETERMINATION OF MINIMAL DENSITY OF FOCUSED RADIATION FLUX SUFFICIENT FOR IGNITION OF TYPICAL LIQUID FUELS AT LIMITED ENERGY SUPPLY. Advances and Applications in Fluid Mechanics, 2015, 17, 265-283.	0.1	0
380	HEAT AND MASS TRANSFER AT IGNITION OF LIQUID CONDENSED SUBSTANCE FILM ON THE SUBSTRATE HEATED UP TO HIGH TEMPERATURES. JP Journal of Heat and Mass Transfer, 2015, 11, 197-213.	0.1	0
381	Numerical Investigation of Water Droplets Shape Influence on Mathematical Modeling Results of Its Evaporation in Motion through a High-Temperature Gas. Mathematical Problems in Engineering, 2014, 2014, 1-8.	0.6	22
382	Mathematical Simulation of Heat and Mass Transfer Processes at the Ignition of Liquid Fuel by Concentrated Flux of Radiation. Mathematical Problems in Engineering, 2014, 2014, 1-7.	0.6	6
383	Stability of composite solid propellant ignition by a local source of limited energy capacity. Combustion, Explosion and Shock Waves, 2014, 50, 670-675.	0.3	18
384	Numerical Research on the Influence of Autonomous Power Plant Condenser Design on Two-Phase Stream Parameters. Advanced Materials Research, 2014, 1040, 547-552.	0.3	0
385	Numerical and Experimental Research of Heat and Mass Transfer at the Heterogeneous System Ignition by Local Energy Source with Limited Heat Content. Mathematical Problems in Engineering, 2014, 2014, 1-9.	0.6	6
386	Mathematical modelling of low-temperature ignition of small-sized coal particles. , 2014, , .		1
387	Mathematical modeling of energy effective ignition of gel-like fuel at local heating. , 2014, , .		0
388	Mechanism of Liquid Drop Deformation in Subsonic Motion in a Gaseous Medium. Journal of Engineering Physics and Thermophysics, 2014, 87, 1351-1361.	0.2	12
389	Mathematical simulation of heat transfer processes at the maximum possible electrical loads in typical light-emitting diodes. EPJ Web of Conferences, 2014, 76, 01022.	0.1	2
390	Motion of fine-spray liquid droplets in hot gas flow. Thermophysics and Aeromechanics, 2014, 21, 609-616.	0.1	8
391	Influence of solid inclusions in liquid drops moving through a high-temperature gaseous medium on their evaporation. Technical Physics, 2014, 59, 1770-1774.	0.2	23
392	Ignition of polymeric material with single hot metallic and nonmetallic particles under diffusive-convective heat and mass transfer in an oxidizing medium. Russian Journal of Physical Chemistry B, 2014, 8, 664-671.	0.2	3
393	Predictive Modelling of the Warming up Times for Thermoelectric Converters. Advanced Materials Research, 2014, 1040, 965-968.	0.3	7
394	Numerical Investigation of the Influence of Convection in a Mixture of Combustion Products on the Integral Characteristics of the Evaporation of a Finely Atomized Water Drop. Journal of Engineering Physics and Thermophysics, 2014, 87, 103-111.	0.2	33
395	The influence of initial sizes and velocities of water droplets on transfer characteristics at high-temperature gas flow. International Journal of Heat and Mass Transfer, 2014, 79, 838-845.	2.5	78
396	Numerical Investigation of Physicochemical Processes Occurring During Water Evaporation in the Surface Layer Pores of a Forest Combustible Material. Journal of Engineering Physics and Thermophysics, 2014, 87, 773-781.	0.2	13

#	Article	IF	CITATIONS
397	Evaporation of two liquid droplets moving sequentially through high-temperature combustion products. Thermophysics and Aeromechanics, 2014, 21, 255-258.	0.1	33
398	Influence of the initial parameters of spray water on its motion through a counter flow of high-temperature gases. Technical Physics, 2014, 59, 959-967.	0.2	29
399	The motion of a manifold of finely dispersed liquid droplets in the counterflow of high-temperature gases. Technical Physics Letters, 2014, 40, 499-502.	0.2	34
400	Evaporation of single droplets and dispersed liquid flow in motion through high-temperature combustion products. High Temperature, 2014, 52, 568-575.	0.1	24
401	Experimental investigation of atomized water droplet initial parameters influence on evaporation intensity in flaming combustion zone. Fire Safety Journal, 2014, 70, 61-70.	1.4	72
402	Analysis of the Effect Exerted by the Initial Temperature of Atomized Water on the Integral Characteristics of Its Evaporation During Motion Through the Zone of "Hot―Gases. Journal of Engineering Physics and Thermophysics, 2014, 87, 450-458.	0.2	20
403	Heat and Mass Transfer in Quenching the Reaction of Thermal Decomposition of a Forest Combustible Material with a Group of Water Drops. Journal of Engineering Physics and Thermophysics, 2014, 87, 608-617.	0.2	11
404	Solid-phase ignition of a composite propellant by a hot particle under free-convection heat sink into the environment. Russian Journal of Physical Chemistry B, 2014, 8, 196-204.	0.2	21
405	Mathematical modeling of heat and mass transfer processes at the ignition of a liquid condensed substance by an immersed hot particle. EPJ Web of Conferences, 2014, 76, 01025.	0.1	0
406	Definition of water droplets "strain cycles―in air times dependences on their sizes and movement velocities. EPJ Web of Conferences, 2014, 76, 01037.	0.1	4
407	Mathematical modeling of physico-chemical processes in the polymerization of multicore cable products. EPJ Web of Conferences, 2014, 76, 01024.	0.1	3
408	Numerical evaluation of the measurement error of temperature by surface thermocouples in the conditions of incomplete thermal contact with object of measurement. EPJ Web of Conferences, 2014, 76, 01034.	0.1	2
409	Investigation of water droplets, kerosene and ethanol deformation in the air. EPJ Web of Conferences, 2014, 76, 01038.	0.1	6
410	Structure of microprocessor-based automation system of oil pumping station "Alexndrovskaya― MATEC Web of Conferences, 2014, 19, 01011.	0.1	0
411	Droplet evaporation in water jet at the motion through high temperature gases. MATEC Web of Conferences, 2014, 19, 01038.	0.1	0
412	Research of Macroscopic Regularities of Heat and Mass Transfer at the Ignition Condition of a Liquid High-Energy Material by an Immersed Source with a Limited Energy Capacity. Advances in Mechanical Engineering, 2014, 6, 764537.	0.8	12
413	Investigation of Regularities of Heat and Mass Transfer and Phase Transitions during Water Droplets Motion through High-Temperature Gases. Advances in Mechanical Engineering, 2014, 6, 865856.	0.8	6
414	Transient Heat and Mass Transfer of Liquid Droplet Ignition at the Spreading over the Heated Substrate. Advances in Mechanical Engineering, 2014, 6, 269321.	0.8	18

#	Article	IF	CITATIONS
415	Computational Investigation of Heat and Mass Transfer Processes in a Gel-Like Fuel Ignited by a Limited-Capacity Source. Journal of Engineering Physics and Thermophysics, 2013, 86, 695-704.	0.2	6
416	Heat and mass transfer in the process of movement of water drops in a high-temperature gas medium. Journal of Engineering Physics and Thermophysics, 2013, 86, 62-68.	0.2	47
417	Analyzing the characteristic times of physical-chemical processes running at ignition of a liquid condensed substance under local heating. Journal of Engineering Thermophysics, 2013, 22, 157-168.	0.6	8
418	Numerical study of ignition of a metallized condensed substance by a source embedded into the subsurface layer. Russian Journal of Physical Chemistry B, 2013, 7, 269-275.	0.2	17
419	Numerical simulation of the ignition of liquid fuel with a limited-energy source under turbulent flow conditions. Russian Journal of Physical Chemistry B, 2013, 7, 302-312.	0.2	3
420	Experimental Study of the Change in the Mass of Water Droplets in their Motion Through High-Temperature Combustion Products. Journal of Engineering Physics and Thermophysics, 2013, 86, 1413-1418.	0.2	43
421	Influence of droplet distribution in a "water slug―on the temperature and concentration of combustion products in its wake. Journal of Engineering Physics and Thermophysics, 2013, 86, 895-904.	0.2	68
422	Numerical Investigation of Evaporation Conditions for Set of Water Drops at the Moving after High Temperature Gas Mixture. Pozharovzryvobezopasnost/Fire and Explosion Safety, 2013, 21, 26-31.	0.2	7
423	Numerical Analysis of Evaporation Process for Droplet Moving at the Water Jet Through High Temperature Combustion Products. Pozharovzryvobezopasnost/Fire and Explosion Safety, 2013, 21, 17-22.	0.2	5
424	EXPERIMENTAL INVESTIGATION OF SPRAYED EXTINGUISHING LIQUID DROPS MOVING FEATURES ON THE ENTERING INTO THE FLAME. Pozharovzryvobezopasnost/Fire and Explosion Safety, 2013, 22, 16-22.	0.2	1
425	INFLUENCE OF WATER DROPLETS DISTRIBUTION IN THE "WATER SHELL" ON TEMPERATURE IN FOLLOW MOVEMENT. Pozharovzryvobezopasnost/Fire and Explosion Safety, 2013, 22, 9-17.	0.2	2
426	Analysis of possible reasons for macroscopic differences in the characteristics of the ignition of a model liquid fuel by a local heat source and a massive heated body. Russian Journal of Physical Chemistry B, 2012, 6, 498-510.	0.2	6
427	Heat and mass transfer at ignition of solid condensed substance with relatively low calorific power by a local energy source. Journal of Engineering Thermophysics, 2012, 21, 69-77.	0.6	21
428	Ignition of a Polymer Material by a Single Particle Heated Till High Temperature. Pozharovzryvobezopasnost/Fire and Explosion Safety, 2012, 20, 3-8.	0.2	2
429	Ignition of Liquid Combustible and Highly Inflammable Substances by Typical Sources with Limited Energy Content. Pozharovzryvobezopasnost/Fire and Explosion Safety, 2012, 20, 11-27.	0.2	2
430	Ignition of a Polymer Material by a Particle Heated Till High Temperature under the Condition of Convection Heat and Mass Transfer. Pozharovzryvobezopasnost/Fire and Explosion Safety, 2012, 20, 15-22.	0.2	1
431	Ignition of Forest Fuel Materials by the Single Particles Heated Up to High Temperatures. Pozharovzryvobezopasnost/Fire and Explosion Safety, 2012, 21, 13-16.	0.2	5
432	Of Ignition Terms the Wood Waste. Pozharovzryvobezopasnost/Fire and Explosion Safety, 2012, 21, .	0.2	1

#	Article	IF	CITATIONS
433	Numerical Estimation of Optimum Sizes for Water Drops at the Conditions of Its Dispersion by Firefighting Devices at Placements. Pozharovzryvobezopasnost/Fire and Explosion Safety, 2012, 21, 74-78.	0.2	7
434	Characteristics of heat and mass transfer at ignition of a thin film of condensed liquid substance by hot particles of different configuration. Journal of Engineering Thermophysics, 2011, 20, 459-467.	0.6	5
435	Numerical solution to the plane heat-mass transfer problem in a system of focused radiation flux-liquid condensed substance film-oxidizer. Journal of Engineering Thermophysics, 2011, 20, 34-41.	0.6	1
436	Conjugate heat and mass transfer at gas-phase ignition of a cable line under current overload. Journal of Engineering Thermophysics, 2011, 20, 192-200.	0.6	2
437	Numerical estimation of the influence of natural convection in liquid on the conditions of ignition by a local heat source. Journal of Engineering Thermophysics, 2011, 20, 211-216.	0.6	3
438	Simulation of the ignition of liquid fuel with a local source of heating under conditions of fuel burnout. Russian Journal of Physical Chemistry B, 2011, 5, 668-673.	0.2	32
439	Numerical simulation of solid-phase ignition of metallized condensed matter by a particle heated to a high temperature. Russian Journal of Physical Chemistry B, 2011, 5, 1000-1006.	0.2	27
440	The influence of radiation heat exchange on characteristics of liquid fuel ignition by a heated metal particle. Journal of Engineering Thermophysics, 2010, 19, 1-8.	0.6	8
441	Heat and mass transfer at ignition of liquid fuel droplets spreading over the surface of massive hot bodies. Journal of Engineering Thermophysics, 2010, 19, 75-84.	0.6	5
442	Numerical analysis of heat-mass transfer mechanisms in gas-phase ignition of films of liquid condensed substances by a laser beam. Journal of Engineering Thermophysics, 2010, 19, 85-93.	0.6	7
443	Ignition of a vapor-gas mixture by a moving small-size source. Russian Journal of Physical Chemistry B, 2010, 4, 93-100.	0.2	4
444	Effect of the shape of a particle heated to a high temperature on the gas-phase ignition of a liquid film. Russian Journal of Physical Chemistry B, 2010, 4, 249-255.	0.2	8
445	Numerical simulation of laser ignition of a liquid fuel film. Russian Journal of Physical Chemistry B, 2010, 4, 664-670.	0.2	2
446	Transient heat and mass transfer at the ignition of vapor and gas mixture by a moving hot particle. International Journal of Heat and Mass Transfer, 2010, 53, 923-930.	2.5	48
447	On the possibility of using a one-dimensional model for numerical analysis of the ignition of a liquid condensed material by a single heated particle. Combustion, Explosion and Shock Waves, 2010, 46, 683-689.	0.3	12
448	Numerical solution of the problem of ignition of a combustible liquid by a single hot particle. Combustion, Explosion and Shock Waves, 2009, 45, 543-550.	0.3	8
449	Heat and mass transfer in hot-particle-induced ignition of a liquid-fuel vapor entering the ambient air from the surface of fabric impregnated with the fuel. Journal of Engineering Physics and Thermophysics, 2009, 82, 448-455.	0.2	2
450	Distinctive features of the gas-phase ignition of a mixture of a kerosene vapor and air by a steel wire heated to high temperatures. Journal of Engineering Physics and Thermophysics, 2009, 82, 1059-1065.	0.2	8

#	Article	IF	CITATIONS
451	Gas-phase ignition of a film of liquid condensed substance by a metal particle heated to high temperatures under mixed-convection conditions. Journal of Engineering Physics and Thermophysics, 2009, 82, 1066-1072.	0.2	2
452	3D problem of heat and mass transfer at the ignition of a combustible liquid by a heated metal particle. Journal of Engineering Thermophysics, 2009, 18, 72-79.	0.6	37
453	The influence of heat transfer conditions at the hot particle-liquid fuel interface on the ignition characteristics. Journal of Engineering Thermophysics, 2009, 18, 162-167.	0.6	36
454	On peculiarities of heat and mass transfer in a hot metal particle-liquid fuel condensed substance-air system. Journal of Engineering Thermophysics, 2009, 18, 241-248.	0.6	1
455	On the scale of "simultaneous―influence of several "hot―particles on the conditions of heat and mass transfer at ignition of liquid condensed substance. Journal of Engineering Thermophysics, 2009, 18, 263-270.	0.6	2
456	Simulation of the ignition of a liquid fuel with a hot particle. Russian Journal of Physical Chemistry B, 2009, 3, 441-447.	0.2	7
457	Heat and mass transfer at the ignition of a liquid substance by a single "Hot―particle. Journal of Engineering Thermophysics, 2008, 17, 244-252.	0.6	32
458	Numerical Research of Heat and Mass Transfer Processes in Water Vapors and Gaseous Thermal Decomposition Products Mixture above the Combustible Wood on the Conditions of Chemical Reaction Termination in it. Advanced Materials Research, 0, 1040, 535-540.	0.3	0
459	Mathematical Modeling of Dispersed Condensed Substance Ignition by Local Energy Source. Advanced Materials Research, 0, 1040, 489-494.	0.3	0
460	Numerical Analysis of Effective Conditions of Chemical Reaction Suppression during Typical Forest Fuel Material Combustion. Applied Mechanics and Materials, 0, 692, 267-271.	0.2	1
461	Numerical Research of Physical and Chemical Processes at Polymeric Material Ignition by Several "Hot―Particles. Advanced Materials Research, 0, 1040, 541-546.	0.3	0
462	Research of Influences Different Materials Cable Product's Shells on Time of Polymerization. Key Engineering Materials, 0, 683, 30-35.	0.4	1
463	Numerical Study of Heat and Mass Transfer at the Ignition of Condensed Substances by Hot Particles. Key Engineering Materials, 0, 683, 555-562.	0.4	0
464	Experimental Study of Environmental Indicators of Coal Processing Waste Combustion. , 0, , .		0