MÃ;rio Ernesto G Valerio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7998125/publications.pdf

Version: 2024-02-01

236612 414034 151 1,963 25 32 citations g-index h-index papers 152 152 152 1776 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Particle size effects on structural and optical properties of BaF ₂ nanoparticles. RSC Advances, 2017, 7, 26839-26848.	1.7	92
2	Structural and optical study of CaF2 nanoparticles produced by a microwave-assisted hydrothermal method. Physica B: Condensed Matter, 2016, 501, 106-112.	1.3	52
3	Effects of thermal treatment on the TL emission of natural quartz. Radiation Measurements, 2002, 35, 155-159.	0.7	42
4	A computational study of intrinsic and extrinsic defects in LiNbO3. Journal of Physics Condensed Matter, 2007, 19, 046211.	0.7	42
5	Laserâ€Sintered Bismuth Germanate Ceramics as Scintillator Devices. Journal of the American Ceramic Society, 2004, 87, 1076-1081.	1.9	41
6	Mechanism of X-ray excited optical luminescence (XEOL) in europium doped BaAl ₂ O ₄ phosphor. Physical Chemistry Chemical Physics, 2016, 18, 17646-17654.	1.3	37
7	The optical properties of Eu3+ doped BaAl2O4: A computational and spectroscopic study. Optical Materials, 2012, 34, 1434-1439.	1.7	35
8	Derivation of potentials for the rare-earth fluorides, and the calculation of lattice and intrinsic defect properties. Journal of Physics Condensed Matter, 2000, 12, 7727-7734.	0.7	34
9	Radioluminescence properties of decaoctahedral BaZrO3. Scripta Materialia, 2011, 64, 118-121.	2.6	34
10	Color-control of the persistent luminescence of cadmium silicate doped with transition metals. Journal of Solid State Chemistry, 2013, 200, 54-59.	1.4	34
11	Production and characterization of pure and Cr3+-doped hydroxyapatite for biomedical applications as fluorescent probes. Journal of Materials Science, 2007, 42, 2236-2243.	1.7	33
12	Scintillating properties of pure and doped BGO ceramics. Journal of Materials Science, 2007, 42, 2231-2235.	1.7	33
13	Yttria thin films doped with rare earth for applications in radiation detectors and thermoluminescent dosimeters. Microelectronics Journal, 2003, 34, 557-559.	1.1	32
14	Spectroscopy study of SrAl2O4:Eu3+. Journal of Luminescence, 2012, 132, 1015-1020.	1.5	32
15	Computer modelling of : I. Interionic potentials and intrinsic defects. Journal of Physics Condensed Matter, 1996, 8, 10931-10937.	0.7	28
16	Dosimetric properties of natural brazilian topaz: A thermally stimulated exoeletronic emission and thermoluminescence study. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 209-214.	0.6	28
17	Radiation detectors based on laser sintered Bi4Ge3O12 ceramics. Nuclear Instruments & Methods in Physics Research B, 2004, 218, 153-157.	0.6	28
18	Performance of Pellets and Composites of Natural Colourless Topaz as Radiation Dosemeters. Radiation Protection Dosimetry, 2002, 100, 413-416.	0.4	27

#	Article	IF	Citations
19	Structural and optical characterizations of Ca2Al2SiO7:Ce3+, Mn2+ nanoparticles produced via a hybrid route. Optical Materials, 2014, 36, 1580-1590.	1.7	27
20	Study of Eu3+â†'Eu2+ reduction in BaAl2O4:Eu prepared in different gas atmospheres. Materials Research Bulletin, 2015, 61, 348-351.	2.7	27
21	Computer modelling of defect structure and rare earth doping in LiCaAlF6and LiSrAlF6. Journal of Physics Condensed Matter, 2003, 15, 2523-2533.	0.7	26
22	Computer modelling of BaY2F8: defect structure, rare earth doping and optical behaviour. Applied Physics B: Lasers and Optics, 2005, 81, 841-846.	1.1	26
23	A new interatomic potential for the ferroelectric and paraelectric phases of LiNbO3. Journal of Physics Condensed Matter, 2005, 17, 837-843.	0.7	26
24	Radioluminescence and X-ray excited optical luminescence of SrAl2O4:Eu nanopowders. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 2923-2927.	0.6	25
25	Radioluminescence properties of rare earths doped SrAl2O4 nanopowders. Journal of Luminescence, 2010, 130, 1525-1530.	1.5	25
26	Preparation and characterization of chloroaluminum phthalocyanine-loaded solid lipid nanoparticles by thermal analysis and powder X-ray diffraction techniques. Journal of Thermal Analysis and Calorimetry, 2012, 108, 191-196.	2.0	25
27	Influence of co-dopant in the europium reduction inÂSrAl ₂ O ₄ host. Journal of Synchrotron Radiation, 2014, 21, 143-148.	1.0	25
28	Mechanisms of radioluminescence of rare earths doped SrAl2O4 and Ca12Al14O33 excited by X-ray. Journal of Electron Spectroscopy and Related Phenomena, 2013, 189, 39-44.	0.8	24
29	Increase of Voc using heterojunctions of BaTiO3 without sensitization. Ceramics International, 2020, 46, 4907-4913.	2.3	23
30	Modelling the concentration dependence of rare earth doping in inorganic materials for optical applications: Application to rare earth doped barium aluminate. Optical Materials, 2011, 34, 109-118.	1.7	22
31	X-ray excited optical luminescence of Ce-doped BaAl2O4. Journal of Luminescence, 2012, 132, 1106-1111.	1.5	22
32	Study of surfaces and morphologies of proteic sol–gel derived barium aluminate nanopowders: An experimental and computational study. Materials Chemistry and Physics, 2012, 136, 1052-1059.	2.0	21
33	Influence of thermal treatment on the Raman, infrared and TL responses of natural topaz. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 230-235.	0.6	20
34	Luminescence in undoped CaYAl3O7 produced via the Pechini method. Physica B: Condensed Matter, 2017, 507, 119-130.	1.3	20
35	Skin permeation, biocompatibility and antitumor effect of chloroaluminum phthalocyanine associated to oleic acid in lipid nanoparticles. Photodiagnosis and Photodynamic Therapy, 2018, 24, 262-273.	1.3	20
36	Changes in dental enamel oven heated or irradiated with Er,Cr:YSGG laser. Analysis by FTIR. Laser Physics, 2010, 20, 871-875.	0.6	19

#	Article	IF	Citations
37	Lithium migration at low concentration in TiO 2 polymorphs. Computational and Theoretical Chemistry, 2015, 1072, 43-51.	1.1	19
38	Evaluation of doses in radiotherapy using solid-state composites based on natural colourless topaz. Applied Radiation and Isotopes, 2003, 58, 489-494.	0.7	18
39	Preparation of composites of topaz embedded in glass matrix for applications in solid state thermoluminescence dosimetry. Nuclear Instruments & Methods in Physics Research B, 2004, 218, 277-282.	0.6	18
40	Computer modelling of thorium doping in LiCaAlF ₆ and LiSrAlF ₆ : application to the development of solid state optical frequency devices. Journal of Physics Condensed Matter, 2009, 21, 325403.	0.7	18
41	Temperature-sensitive luminescence of Y2O3:Nd3+ nanocrystals produced by an eco-friendly route. Optical Materials, 2019, 89, 536-542.	1.7	18
42	An EXAFS study of the Ni dopant site in BaLiF. Journal of Physics Condensed Matter, 1996, 8, 10679-10685.	0.7	17
43	Thermoluminescence mechanism of Mn2+, Mg2+ and Sr2+ doped calcite. Journal of Physics and Chemistry of Solids, 1999, 60, 1973-1981.	1.9	15
44	Thermally assisted tunneling:â€,â€,An alternative model for the thermoluminescence process in calcite. Physical Review B, 2001, 64, .	1.1	15
45	X-ray absorption fine structure spectroscopy and photoluminescence study of multifunctional europium (III)-doped hydroxyapatite in the presence of cationic surfactant medium. Journal of Luminescence, 2018, 201, 70-76.	1.5	15
46	Hydrothermal synthesis of CdWO4 for scintillator-polymer composite films development. Journal of Luminescence, 2018, 199, 225-231.	1.5	15
47	Effects of X-ray irradiation on the Eu3+Ââ†'ÂEu2+ conversion in CaAl2O4 phosphors. Optical Materials, 2018, 75, 122-126.	1.7	15
48	Thermoluminescence of brazilian topaz. Radiation Effects and Defects in Solids, 1995, 135, 109-113.	0.4	14
49	Computer modelling of : II. Defects produced by divalent dopants. Journal of Physics Condensed Matter, 1998, 10, 3353-3358.	0.7	14
50	Thermoluminescence kinetic parameters of Bi4Ge3O12 single crystals. Nuclear Instruments & Methods in Physics Research B, 2006, 250, 390-395.	0.6	14
51	Optical properties of rare-earth doped Sr3Al2O6. Optical Materials, 2010, 32, 1341-1344.	1.7	14
52	Particle Size Control of Y ₂ O ₃ :Eu ³⁺ Prepared via a Coconut Water-Assisted Sol-Gel Method. Journal of Nanomaterials, 2011, 2011, 1-6.	1.5	14
53	Thermoluminescence and optically stimulated luminescence properties of the Eu2+-doped KMgF3 produced by a hydrothermal microwave method. Journal of Luminescence, 2019, 206, 302-307.	1.5	14
54	Thermoluminescence of Natural Topaz Crystals of Differing Genesis. Materials Science Forum, 1997, 239-241, 765-768.	0.3	13

#	Article	IF	Citations
55	Computer modelling of radiation generated defects in BGO scintillators. Nuclear Instruments & Methods in Physics Research B, 2004, 218, 145-147.	0.6	13
56	Thermoluminescent characteristics of mineral samples acquired as jade. Nuclear Instruments & Methods in Physics Research B, 2004, 218, 198-201.	0.6	13
57	Comparative study of structural and optical properties of ZnO nanostructures prepared by three different aqueous solution methods. Materials Chemistry and Physics, 2013, 142, 325-332.	2.0	13
58	The effect of the host composition on the lifetime decay properties of barium/strontium aluminates compounds. Journal of Applied Physics, 2014, 115, 103510.	1.1	13
59	Optical spectroscopy study of YVO4:Eu3+ nanopowders prepared by the proteic sol–gel route. Solid State Sciences, 2015, 42, 45-51.	1.5	13
60	Computer Modelling of Hafnium Doping in Lithium Niobate. Crystals, 2018, 8, 123.	1.0	13
61	Optical properties of pure and Cr3+ doped BGO ceramic scintillators. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 980-983.	0.8	12
62	Correlations between chemical composition and provenance of Justino site ceramics by INAA. Journal of Radioanalytical and Nuclear Chemistry, 2008, 278, 185-190.	0.7	12
63	Computer modelling of rare-earth dopants in BaLiF3. Journal of Physics Condensed Matter, 2001, 13, 2147-2154.	0.7	11
64	A computational study of the structure, lattice and defect properties of pure and doped FÂand OHÂ-topaz. Journal of Physics Condensed Matter, 2004, 16, S2771-S2779.	0.7	11
65	Modelling intrinsic defects and transport mechanisms in the bismuth germanate crystalline system. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 485-489.	0.8	11
66	Determination of trace elements in archaeological ceramics and application of Kernel Density Estimates: Implications for the definition of production locations. Journal of Radioanalytical and Nuclear Chemistry, 2006, 269, 441-445.	0.7	11
67	Problems in the thermal investigation of the BaF2-YF3 system. Journal of Thermal Analysis and Calorimetry, 2009, 95, 43-48.	2.0	11
68	Luminescence properties of Er3+ and Tm3+ doped BaY2F8. Journal of Luminescence, 2013, 138, 19-24.	1.5	11
69	Structural and optical properties of the nanopowder of the Eu3+ doped LiLaP4O12 produced by sol gel route. Radiation Measurements, 2014, 71, 55-60.	0.7	11
70	Optical properties of Pr and Eu-doped SrAl12O19: A theoretical study. Optical Materials, 2015, 48, 105-109.	1.7	11
71	Luminescence characterization and the energy level scheme for lanthanide doped CaYAl3O7. Journal of Luminescence, 2018, 203, 486-491.	1.5	11
72	Thermally stimulated luminescence and EPR studies on topaz. Applied Radiation and Isotopes, 2006, 64, 906-909.	0.7	10

#	Article	IF	Citations
73	Influence of concentration of hydroxyapatite surface modifier agent on bioactive composite characteristics. Ceramics International, 2016, 42, 17023-17031.	2.3	10
74	The effects of cooling rate on the structure and luminescent properties of undoped and doped SrAl2O4 phosphors. Optical Materials, 2017, 72, 71-77.	1.7	10
75	Thermoluminescence and persistent luminescence of Tb3+ activated CaYAl3O7. Optical Materials, 2019, 91, 413-418.	1.7	10
76	Phototransferred thermoluminescence of quartz. Radiation Measurements, 2001, 33, 427-430.	0.7	9
77	Predicting the spectroscopic behaviour of Eu3+ in BaLiF3 via defect modelling and crystal field parameter calculations. Chemical Physics Letters, 2003, 369, 90-94.	1.2	9
78	Defect simulation and crystal field studies of Ln3+:LiCaAlF6 and LiSrAlF6. Nuclear Instruments & Methods in Physics Research B, 2004, 218, 232-235.	0.6	9
79	Computer modelling of Bi12TiO20: Intrinsic defects, ion migration and rare earth ion incorporation. Optical Materials, 2010, 32, 1375-1376.	1.7	9
80	Computer modelling of the reduction of rare earth dopants in barium aluminate. Journal of Solid State Chemistry, 2011, 184, 1903-1908.	1.4	9
81	The use of pellets of brazilian natural topaz as radiation dosimeters. Radiation Effects and Defects in Solids, 2001, 156, 325-330.	0.4	8
82	Structural and optical properties of Nd- and Tb-doped BaY2F8. Optical Materials, 2007, 30, 184-187.	1.7	8
83	Intrinsic Defects in Strontium Aluminates studied via Computer Simulation Technique. Journal of Physics: Conference Series, 2010, 249, 012042.	0.3	8
84	Scintillation mechanism of Tb3+ doped BaY2F8. Optical Materials, 2010, 32, 1337-1340.	1.7	8
85	Mechanism of luminescent enhancement in Ba2GdNbO6:Eu3+ perovskite by Li+ co-doping. Journal of Luminescence, 2015, 158, 75-80.	1.5	8
86	Production of Eu-doped BaAl 2 O 4 at low temperature via an alternative sol-gel method using PVA as complexing agent. Journal of Physics and Chemistry of Solids, 2017, 102, 74-78.	1.9	8
87	Synthesis and characterization of luminescent Ln3+ (Ln = Eu, Tb and Dy)-doped LiYF4 microcrystals produced by a facile microwave-assisted hydrothermal method. Journal of Luminescence, 2020, 219, 116843.	1.5	8
88	Effects of ion implantation on the thermoluminescent properties of natural colourless topaz. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 196-201.	0.6	7
89	Radiation-induced charge trapping and recombination process in natural topaz studied by TL, EPR and XRD. Nuclear Instruments & Methods in Physics Research B, 2004, 218, 123-127.	0.6	7
90	Production and characterization of spodumene dosimetric pellets prepared by a sol–gel route. Radiation Physics and Chemistry, 2014, 104, 93-99.	1.4	7

#	Article	IF	Citations
91	The incorporation of chromium (III) into hydroxyapatite crystals. Materials Letters, 2015, 140, 187-191.	1.3	7
92	Influence of calcium substitution on defect disorder in barium titanate by atomistic simulation. Modelling and Simulation in Materials Science and Engineering, 2016, 24, 015001.	0.8	7
93	A computational and spectroscopic study of Dy3+ doped BaAl2O4 phosphors. Optical Materials, 2018, 83, 328-332.	1.7	7
94	Ln3+ doping in CaYAl3O7 and luminescence concentration quenching studied via a new computer modelling strategy. Optical Materials, 2019, 92, 212-216.	1.7	7
95	Computer Simulation of the Incorporation of V2+, V3+, V4+, V5+ and Mo3+, Mo4+, Mo5+, Mo6+ Dopants in LiNbO3. Crystals, 2020, 10, 457.	1.0	7
96	Computer modelling of BaLiF3: III. Substitution of La3+, Nd3+and Y3+rare earth ions. Radiation Effects and Defects in Solids, 1999, 151, 249-254.	0.4	6
97	Elemental Composition of Urban Aerosol Collected in Florence, Italy. Environmental Monitoring and Assessment, 2000, 65, 165-173.	1.3	6
98	Computer modelling of divalent, trivalent and tetravalent ion doping in LiCaAlF6and LiSrAlF6. Journal of Physics Condensed Matter, 2004, 16, 8733-8741.	0.7	6
99	Computer modelling of trivalent metal dopants in lithium niobate. Journal of Physics Condensed Matter, 2008, 20, 035201.	0.7	6
100	X-ray-excited optical luminescence and X-ray absorption fine-structures studies of CdWO ₄ scintillator. Journal of Synchrotron Radiation, 2012, 19, 591-595.	1.0	6
101	Computer simulation of metal co-doping in lithium niobate. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140406.	1.0	6
102	Atomistic simulation and XAS investigation of Mn induced defects in Bi12TiO20. Journal of Solid State Chemistry, 2016, 238, 210-216.	1.4	6
103	A computational study of the influence of oxygen incorporation on crystal growth and contamination in BaLiF3. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 32-36.	0.6	5
104	Computer modelling of intrinsic and substitutional defects in LiNbO3. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1201-1204.	0.8	5
105	Computer modelling of the optical properties of rare-earth doped metal fluorides. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1185-1188.	0.8	5
106	Optical properties of Pr-doped BaY2F8. Journal of Applied Physics, 2014, 116, .	1.1	5
107	Fine tuning of polymer content for enhanced structure and luminescent properties of Eu3+:siloxane–poly(methyl methacrylate) hybrids to be applied in photonics. Polymer, 2019, 181, 121767.	1.8	5
108	VUV excited luminescence and thermoluminescence investigation on Er3+- or Pr3+-doped BaY2F8 single crystals. Optical Materials, 2019, 90, 238-243.	1.7	5

#	Article	IF	CITATIONS
109	Modelling of Intrinsic Defects in CaYAl3O7. Acta Physica Polonica A, 2018, 133, 781-784.	0.2	5
110	Ionic transport in barium lithium fluoride. Radiation Effects and Defects in Solids, 2001, 155, 393-396.	0.4	4
111	Computer modelling of intrinsic defects and migration processes in KY3F10. Radiation Effects and Defects in Solids, 2001, 155, 397-401.	0.4	4
112	Synthesis of Yttria Nanopowders Doped with Rare Earth via a Coconut Water-Based Sol-Gel Process. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 247-252.	0.1	4
113	Computer modelling of undoped and Eu ³⁺ â€doped LiLa(WO ₄) ₂ . Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 165-167.	0.8	4
114	Development of efficient scintillator materials based on LiLaP4O12 doped with rare earth ions. Journal of Luminescence, 2018, 203, 385-390.	1.5	4
115	X-ray absorption spectroscopy and tunable color emission study of the Mn-co-doped BaAl2O4: Ce phosphor under synchrotron radiation. Optical Materials, 2019, 91, 401-407. Development of CdWO <mml:math <="" display="inline" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.7</td><td>4</td></mml:math>	1.7	4
116	id="d1e309" altimg="si7.svg"> <mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msub> -polystyrene scintillator composites for X-ray detection in imaging systems. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1025,	0.7	4
117	166196. Defects in MgB4O7 (pure and doped with lanthanides): A case study using a computational modelling approach. Physica B: Condensed Matter, 2022, 640, 414049.	1.3	4
118	One-step synthesis of YF3:Nd rod-like particles for contactless luminescent thermometers. Optical Materials, 2022, 131, 112661.	1.7	4
119	Relaxation processes in calcium fluoride solid solutions with rare-earth and aluminium fluorides. Radiation Effects and Defects in Solids, 1991, 119-121, 393-398.	0.4	3
120	The role played by hydrogen in the ionic thermocurrents of beryl. Radiation Effects and Defects in Solids, 1991, 119-121, 603-608.	0.4	3
121	On the error in the activation energy obtained by the initial rise method for thermally stimulated processes in dielectrics. Radiation Effects and Defects in Solids, 1995, 134, 147-152.	0.4	3
122	Computer modelling of materials for solid state laser applications. Radiation Effects and Defects in Solids, 2001, 154, 243-247.	0.4	3
123	Computer modelling of the structure, lattice and defect properties of F- and OH-topaz. Radiation Effects and Defects in Solids, 2002, 157, 845-848.	0.4	3
124	Computer modelling of mixed metal fluorides for optical applications. Dalton Transactions, 2004, , 3098.	1.6	3
125	Computer modelling of the optical behaviour of rare earth dopants in BaY2F8. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 476-480.	0.8	3
126	Photoinduced emission and thermoluminescence in topaz. Nuclear Instruments & Methods in Physics Research B, 2006, 250, 386-389.	0.6	3

#	Article	IF	Citations
127	Thermoluminescent characteristics of Actinolite-Teflon composites for gamma high-doses. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1052-1055.	0.8	3
128	Computer modelling of intrinsic defects and rare earth doping in KYF4, K2YF5 and KY3F10. Journal of Physics: Conference Series, 2010, 249, 012040.	0.3	3
129	Synthesis and synchrotron characterisation of novel dual-template of hydroxyapatite scaffolds with controlled size porous distribution. Materials Letters, 2017, 190, 107-110.	1.3	3
130	Computational modelling of intrinsic defects in the orthosilicates Y2SiO5 and Lu2SiO5. Journal of Physics Condensed Matter, 2019, 31, 415902.	0.7	3
131	White light emission of CdSiO3:Gd,TM (TM = Ni, Cr) phosphors. Materials Research Bulletin, 2020, 126, 110851.	2.7	3
132	Thermoluminescent Properties of Calcium Fluoride Doped with Lanthanum and Aluminum. Materials Science Forum, 1997, 239-241, 749-752.	0.3	2
133	Computer modelling of doping and ion implantation in Fâ^'/OHâ^'-topaz. Nuclear Instruments & Methods in Physics Research B, 2004, 218, 42-45.	0.6	2
134	Computer modelling of doped mixed metal fluorides and oxides for device applications: Rare earth, sodium and barium doped KYF4. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 2715-2718.	0.6	2
135	Defect studies and optical activation of Yb doped GaN. Journal of Physics: Conference Series, 2010, 249, 012053.	0.3	2
136	Computer modelling of rare earth dopants in KYF materials: bulk and surface studies. IOP Conference Series: Materials Science and Engineering, 2010, 15, 012014.	0.3	2
137	Influence of the Uniaxial Hot-Pressing Sintering Condition on Bi ₄ Ge ₃ O ₁₂ Ceramic Scintillators. Journal of Spectroscopy, 2018, 2018, 1-6.	0.6	2
138	Computer modelling of Bi12SiO20 and Bi4Si3O12: Intrinsic defects and rare earth ion incorporation. Journal of Solid State Chemistry, 2020, 292, 121608.	1.4	2
139	Influence of Eu valence on the optical activity of BaTiO ₃ decorated with CaF ₂ synthesized by microwave-assisted hydrothermal method. Dalton Transactions, 2020, 49, 8540-8548.	1.6	2
140	Photoluminescent properties of BaF2 scintillator-polystyrene composite films under vacuum ultraviolet radiation. Materials Research Bulletin, 2021, 135, 111159.	2.7	2
141	Intrinsic defects and non-stoichiometry in undoped cadmium silicate hosts. Journal of Alloys and Compounds, 2021, 857, 157580.	2.8	2
142	Optical spectroscopy study of Eu-doped ions in BaAl2O4 phosphors. Journal of Luminescence, 2021, 236, 118011.	1.5	2
143	Influence of the Sr ²⁺ and Mg ²⁺ Content on the TL Emission of Calcite. Materials Science Forum, 1997, 239-241, 741-744.	0.3	1
144	Exafs studies of LiYF 4 -LiREF 4 solid solutions. Radiation Effects and Defects in Solids, 2002, 157, 1173-1176.	0.4	1

#	Article	IF	CITATIONS
145	Optically stimulated luminescence dosimetry performance of natural Brazilian topaz exposed to beta radiation. Radiation Protection Dosimetry, 2006, 119, 161-163.	0.4	1
146	EXAFS simulations in Zn-doped LiNbO3based on defect calculations. IOP Conference Series: Materials Science and Engineering, 2017, 169, 012003.	0.3	1
147	Computer modelling of defects and dopants in mixed metal fluorides. Radiation Effects and Defects in Solids, 2002, 157, 795-798.	0.4	O
148	Evidence for a new structure in a mixed metal sulphate system by EXAFS. X-Ray Spectrometry, 2002, 31, 162-166.	0.9	0
149	A new potential for lithium niobate and its application in the calculation of structure and defect properties. , 0, , .		O
150	Dose evaluation in paediatric radiology and adult bone densitometry examinations. Radiation Protection Dosimetry, 2006, 120, 91-94.	0.4	0
151	Modelling the concentration dependence of doping in optical materials. IOP Conference Series: Materials Science and Engineering, 2015, 80, 012010.	0.3	0