List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7998065/publications.pdf Version: 2024-02-01

HONG-BO TAN

#	Article	IF	CITATIONS
1	Effect of organic alkali on hydration of GGBS-FA blended cementitious material activated by sodium carbonate. Ceramics International, 2022, 48, 1611-1621.	2.3	8
2	Effect of sodium carbonate and sodium phosphate on hydration of cement paste. Journal of Building Engineering, 2022, 45, 103577.	1.6	10
3	Influence of fluoride ion on the performance of PCE in hemihydrate gypsum pastes. Journal of Building Engineering, 2022, 46, 103582.	1.6	1
4	Effect of tricalcium aluminate and nano silica on performance of hemihydrate gypsum. Construction and Building Materials, 2022, 321, 126362.	3.2	8
5	Mechanical performance, hydration characteristics and microstructures of high volume blast furnace ferronickel slag cement mortar by wet grinding activation. Construction and Building Materials, 2022, 320, 126148.	3.2	16
6	Enhancement of compressive strength of high-volume fly ash cement paste by wet grinded cement: Towards low carbon cementitious materials. Construction and Building Materials, 2022, 323, 126458.	3.2	18
7	Improvement in flexural strength of Portland cement by lamellar structured montmorillonite. Construction and Building Materials, 2022, 329, 127208.	3.2	6
8	Effect of sulfonated acetone formaldehyde on the properties of high-fluid backfill materials. Construction and Building Materials, 2022, 327, 126795.	3.2	6
9	Nano C-S-H seeds prepared from ground granulated blast-furnace slag-carbide slag and its application in Portland cement. Construction and Building Materials, 2022, 329, 127204.	3.2	13
10	Research on the properties of wet-ground waste limestone powder as foam stabilizer in foamed concrete. Construction and Building Materials, 2022, 329, 127203.	3.2	17
11	Sustainable clinker-free solid waste binder produced from wet-ground granulated blast-furnace slag, phosphogypsum and carbide slag. Construction and Building Materials, 2022, 330, 127218.	3.2	67
12	Properties of β-HPG pastes in the presence of α-HPG prepared from phosphogypsum. Construction and Building Materials, 2022, 334, 127414.	3.2	3
13	Preparation of organic montmorillonite supported TiO2 and its application in methylene blue removal. Construction and Building Materials, 2022, 341, 127762.	3.2	7
14	Compressive strength and permeability of steam-cured mortar incorporating high volume fly ash with different activation degrees by wet milling. Journal of Building Engineering, 2022, 56, 104767.	1.6	0
15	Preparation and evaluation of high-fluid backfill materials from construction spoil. Construction and Building Materials, 2022, 345, 128370.	3.2	10
16	Improving the mechanical property and water resistance of β-hemihydrate phosphogypsum by incorporating ground blast-furnace slag and steel slag. Construction and Building Materials, 2022, 344, 128265.	3.2	11
17	Hydration and mechanical properties of cement-marble powder system incorporating triisopropanolamine. Construction and Building Materials, 2021, 266, 121068.	3.2	50
18	Effect of steam curing on compressive strength and microstructure of high volume ultrafine fly ash cement mortar. Construction and Building Materials, 2021, 266, 120894.	3.2	77

#	Article	IF	CITATIONS
19	Utilization of turmeric residue for the preparation of ceramic foam. Journal of Cleaner Production, 2021, 278, 123825.	4.6	30
20	Low carbon cementitious materials: Sodium sulfate activated ultra-fine slag/fly ash blends at ambient temperature. Journal of Cleaner Production, 2021, 280, 124363.	4.6	105
21	Effect of wet grinded lithium slag on compressive strength and hydration of sulphoaluminate cement system. Construction and Building Materials, 2021, 267, 120465.	3.2	66
22	Utilization of barium slag to improve chloride-binding ability of cement-based material. Journal of Cleaner Production, 2021, 283, 124612.	4.6	57
23	Nano particles prepared from hardened cement paste by wet grinding and its utilization as an accelerator in Portland cement. Journal of Cleaner Production, 2021, 283, 124632.	4.6	29
24	Polycarboxylate superplasticizer modified by phosphate ester in side chain and its basic properties in gypsum plaster. Construction and Building Materials, 2021, 271, 121566.	3.2	22
25	Numerical Simulation of the Mechanical Behavior of Fiber-Reinforced Cement Composites Subjected Dynamic Loading. Applied Sciences (Switzerland), 2021, 11, 1112.	1.3	10
26	Improving durability of heat-cured high volume fly ash cement mortar by wet-grinding activation. Construction and Building Materials, 2021, 289, 123157.	3.2	33
27	Special Issue on Silicate Solid Waste Recycling. Materials, 2021, 14, 3776.	1.3	Ο
28	Ground granulated blast-furnace slag/fly ash blends activated by sodium carbonate at ambient temperature. Construction and Building Materials, 2021, 291, 123378.	3.2	27
29	An accelerator prepared from waste concrete recycled powder and its effect on hydration of cement-based materials. Construction and Building Materials, 2021, 296, 123767.	3.2	51
30	A comparative study on concrete slurry waste: performance optimization from the wet-milling process. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	7
31	Study on performance and function mechanisms of whisker modified flue gas desulfurization (FGD) gypsum. Construction and Building Materials, 2021, 301, 124341.	3.2	29
32	The influence of wet ground fly ash on the performance of foamed concrete. Construction and Building Materials, 2021, 304, 124676.	3.2	25
33	Green reaction-type nucleation seed accelerator prepared from coal fly ash ground in water environment. Construction and Building Materials, 2021, 306, 124840.	3.2	14
34	Heat-cured cement-based composites with wet-grinded fly ash and carbide slag slurry: Hydration, compressive strength and carbonation. Construction and Building Materials, 2021, 307, 124916.	3.2	12
35	Compressive strength and hydration process of sodium carbonate-activated superfine slag/marble powder binders. Journal of Building Engineering, 2021, 43, 103121.	1.6	8
36	Concrete Based on Clinker-Free Cement: Selecting the Functional Unit for Environmental Assessment. Sustainability, 2021, 13, 135.	1.6	36

#	Article	IF	CITATIONS
37	Preparation of nano cement particles by wet-grinding and its effect on hydration of cementitious system. Construction and Building Materials, 2021, 307, 125051.	3.2	9
38	Eco-friendly UHPC prepared from high volume wet-grinded ultrafine GGBS slurry. Construction and Building Materials, 2021, 308, 125057.	3.2	60
39	Preparation of nano-kaolin by wet-grinding process and its application as accelerator in Portland cement. Journal of Building Engineering, 2021, 44, 103401.	1.6	1
40	Abrasion Resistance Improvement of Recycled Aggregate Pervious Concrete with Granulated Blast Furnace Slag and Copper Slag. Journal of Advanced Concrete Technology, 2021, 19, 1088-1099.	0.8	6
41	New treatment technology: The use of wet-milling concrete slurry waste to substitute cement. Journal of Cleaner Production, 2020, 242, 118347.	4.6	67
42	Effects of amorphous aluminum hydroxide on chloride immobilization in cement-based materials. Construction and Building Materials, 2020, 231, 117171.	3.2	23
43	Effect of aliphatic-based superplasticizer on rheological performance of cement paste plasticized by polycarboxylate superplasticizer. Construction and Building Materials, 2020, 233, 117181.	3.2	34
44	Effect of aluminum sulfate on the hydration of Portland cement, tricalcium silicate and tricalcium aluminate. Construction and Building Materials, 2020, 232, 117179.	3.2	81
45	Preparation for polyacrylic acid modified by ester group in side chain and its application as viscosity enhancing agent in polycarboxylate superplasticizer system. Construction and Building Materials, 2020, 233, 117272.	3.2	16
46	Preparation for micro-lithium slag via wet grinding and its application as accelerator in Portland cement. Journal of Cleaner Production, 2020, 250, 119528.	4.6	107
47	Utilization of Carbide Slag by Wet Grinding as an Accelerator in Calcium Sulfoaluminate Cement. Materials, 2020, 13, 4526.	1.3	16
48	Nano-carbide slag seed as a new type accelerator for Portland cement. Materials Letters, 2020, 278, 128464.	1.3	16
49	Ultra-fine slag activated by sodium carbonate at ambient temperature. Construction and Building Materials, 2020, 264, 120695.	3.2	19
50	Effect of TIPA on mechanical properties and hydration properties of cement-lithium slag system. Journal of Environmental Management, 2020, 276, 111274.	3.8	44
51	Improvement in chloride immobilization of cement-metakaolin system by triisopropanolamine. Applied Clay Science, 2020, 193, 105656.	2.6	11
52	Utilization of carbide slag-granulated blast furnace slag system by wet grinding as low carbon cementitious materials. Construction and Building Materials, 2020, 249, 118763.	3.2	70
53	Preparation of ultrafine fly ash by wet grinding and its utilization for immobilizing chloride ions in cement paste. Waste Management, 2020, 113, 456-468.	3.7	21
54	Cesium immobilization by K-struvite crystal in aqueous solution: Ab initio calculations and experiments. Journal of Hazardous Materials, 2020, 387, 121872.	6.5	16

#	Article	IF	CITATIONS
55	Effect of sodium gluconate on molecular conformation of polycarboxylate superplasticizer studied by the molecular dynamics simulation. Journal of Molecular Modeling, 2020, 26, 45.	0.8	7
56	Potential application of Portland cement-sulfoaluminate cement system in precast concrete cured under ambient temperature. Construction and Building Materials, 2020, 251, 118869.	3.2	39
5 7	Potential utilization of copper tailings in the preparation of low heat cement clinker. Construction and Building Materials, 2020, 252, 119130.	3.2	32
58	Fluid Permeability of Ground Steel Slag-Blended Composites Evaluated by Pore Structure. Advances in Materials Science and Engineering, 2020, 2020, 1-14.	1.0	0
59	Effects of colloidal nano-SiO2 on the immobilization of chloride ions in cement-fly ash system. Cement and Concrete Composites, 2020, 110, 103596.	4.6	46
60	Effect of triisopropanolamine on chloride binding of cement paste with ground-granulated blast furnace slag. Construction and Building Materials, 2020, 256, 119494.	3.2	17
61	Effect of storage condition on basic performance of polycarboxylate superplasticiser system incorporated sodium gluconate. Construction and Building Materials, 2019, 223, 852-862.	3.2	14
62	Compressive strength and hydration process of ground granulated blast furnace slag-waste gypsum system managed by wet grinding. Construction and Building Materials, 2019, 228, 116777.	3.2	47
63	Eco-friendly treatment of low-calcium coal fly ash for high pozzolanic reactivity: A step towards waste utilization in sustainable building material. Journal of Cleaner Production, 2019, 238, 117962.	4.6	170
64	Segmented fractal pore structure covering nano- and micro-ranges in cementing composites produced with GGBS. Construction and Building Materials, 2019, 225, 1170-1182.	3.2	57
65	Compressive strength and hydration process of wet-grinded granulated blast-furnace slag activated by sodium sulfate and sodium carbonate. Cement and Concrete Composites, 2019, 97, 387-398.	4.6	125
66	Microemulsion Synthesis of Nanosized Calcium Sulfate Hemihydrate and Its Morphology Control by Different Surfactants. ACS Omega, 2019, 4, 9552-9556.	1.6	14
67	Chloride immobilization of cement-based material containing nano-Al2O3. Construction and Building Materials, 2019, 220, 43-52.	3.2	31
68	Effect of silica fume particle dispersion and distribution on the performance of cementitious materials: A theoretical analysis of optimal sonication treatment time. Construction and Building Materials, 2019, 212, 549-560.	3.2	19
69	Utilization of waste marble powder in cement-based materials by incorporating nano silica. Construction and Building Materials, 2019, 211, 139-149.	3.2	43
70	Compressive strength and hydration of high-volume wet-grinded coal fly ash cementitious materials. Construction and Building Materials, 2019, 206, 248-260.	3.2	62
71	Effect of aluminum sulfate on the hydration of tricalcium silicate. Construction and Building Materials, 2019, 205, 414-424.	3.2	51
72	Effect of organic alkali on compressive strength and hydration of wet-grinded granulated blast-furnace slag containing Portland cement. Construction and Building Materials, 2019, 206, 10-18.	3.2	21

#	Article	IF	CITATIONS
73	Effect of mixing sequence of calcium ion and polycarboxylate superplasticizer on dispersion of a low grade silica fume in cement-based materials. Construction and Building Materials, 2019, 195, 537-546.	3.2	18
74	Effects of nano-SiO2 on early strength and microstructure of steam-cured high volume fly ash cement system. Construction and Building Materials, 2019, 194, 350-359.	3.2	173
75	Improvement in fluidity loss of magnesia phosphate cement by incorporating polycarboxylate superplasticizer. Construction and Building Materials, 2018, 165, 887-897.	3.2	20
76	Self-hydration characteristics of ground granulated blast-furnace slag (GGBFS) by wet-grinding treatment. Construction and Building Materials, 2018, 167, 96-105.	3.2	59
77	Improvement in compatibility of polycarboxylate superplasticizer with poor-quality aggregate containing montmorillonite by incorporating polymeric ferric sulfate. Construction and Building Materials, 2018, 162, 566-575.	3.2	36
78	Effect of sodium sulfate and nano-SiO2 on hydration and microstructure of cementitious materials containing high volume fly ash under steam curing. Construction and Building Materials, 2018, 163, 812-825.	3.2	63
79	Effect of Sodium Tripolyphosphate on Clay Tolerance of Polycarboxylate Superplasticizer. KSCE Journal of Civil Engineering, 2018, 22, 2934-2941.	0.9	15
80	Influence of steam curing and nano silica on hydration and microstructure characteristics of high volume fly ash cement system. Construction and Building Materials, 2018, 171, 83-95.	3.2	44
81	Effect of hydroxypropyl-methyl cellulose ether on rheology of cement paste plasticized by polycarboxylate superplasticizer. Construction and Building Materials, 2018, 160, 341-350.	3.2	105
82	Pore structure evaluation of cementing composites blended with coal by-products: Calcined coal gangue and coal fly ash. Fuel Processing Technology, 2018, 181, 75-90.	3.7	120
83	Effect of triisopropanolamine on compressive strength and hydration of steaming-cured cement-fly ash paste. Construction and Building Materials, 2018, 192, 836-845.	3.2	46
84	Utilization of lithium slag by wet-grinding process to improve the early strength of sulphoaluminate cement paste. Journal of Cleaner Production, 2018, 205, 536-551.	4.6	182
85	Utilization of pretreated fly ash to enhance the chloride binding capacity of cement-based material. Construction and Building Materials, 2018, 175, 726-734.	3.2	56
86	Effect of borax and sodium tripolyphosphate on fluidity of gypsum paste plasticized by polycarboxylate superplasticizer. Construction and Building Materials, 2018, 176, 394-402.	3.2	31
87	Effect of triisopropanolamine on compressive strength and hydration of cement-fly ash paste. Construction and Building Materials, 2018, 179, 89-99.	3.2	70
88	Nano-silica and silica fume modified cement mortar used as Surface Protection Material to enhance the impermeability. Cement and Concrete Composites, 2018, 92, 7-17.	4.6	197
89	Effect of Polyacrylic Acid on Rheology of Cement Paste Plasticized by Polycarboxylate Superplasticizer. Materials, 2018, 11, 1081.	1.3	22
90	Effect of Competitive Adsorption between Polycarboxylate Superplasticizer and Hydroxypropylmethyl Cellulose on Rheology of Gypsum Paste. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	24

#	Article	IF	CITATIONS
91	Effect of TIPA on Chloride Immobilization in Cement-Fly Ash Paste. Advances in Materials Science and Engineering, 2018, 2018, 1-11.	1.0	11
92	Adsorbing behavior of polycarboxylate superplasticizer in the presence of the ester group in side chain. Journal of Dispersion Science and Technology, 2017, 38, 743-749.	1.3	47
93	Effect of borax on rheology of calcium sulphoaluminate cement paste in the presence of polycarboxylate superplasticizer. Construction and Building Materials, 2017, 139, 277-285.	3.2	61
94	Effect of sodium gluconate on clay tolerance of polycarboxylate superplasticiser. Advances in Cement Research, 2017, 29, 278-286.	0.7	7
95	Effect of competitive adsorption between sodium gluconate and polycarboxylate superplasticizer on rheology of cement paste. Construction and Building Materials, 2017, 144, 338-346.	3.2	65
96	Effect of the Adsorbing Behavior of Phosphate Retarders on Hydration of Cement Paste. Journal of Materials in Civil Engineering, 2017, 29, .	1.3	35
97	Effect of polyacrylic acid emulsion on fluidity of cement paste. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 535, 139-148.	2.3	53
98	Preparation and application of fine-grinded cement in cement-based material. Construction and Building Materials, 2017, 157, 34-41.	3.2	41
99	Effect of sodium gluconate on dispersion of polycarboxylate superplasticizer with different grafting density in side chain. Journal of Industrial and Engineering Chemistry, 2017, 55, 91-100.	2.9	120
100	Influence of Ca/Si ratio of concrete pore solution on thaumasite formation. Construction and Building Materials, 2017, 153, 261-267.	3.2	18
101	Thermal analyses. Journal of Thermal Analysis and Calorimetry, 2017, 129, 1547-1554.	2.0	9
102	Improvement of Polyethylene Glycol in Compatibility with Polycarboxylate Superplasticizer and Poor-Quality Aggregates Containing Montmorillonite. Journal of Materials in Civil Engineering, 2017, 29, .	1.3	17
103	One-pot in-situ surface modification of silica nanosphere by siloxane-coupled polycarboxylate with improved aqueous dispersion stability. Journal of Sol-Gel Science and Technology, 2017, 83, 582-589.	1.1	6
104	Preparation and characterization of semi-carbonized rice straw fiber. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 496-502.	0.4	5
105	Tolerance of Clay Minerals by Cement: Effect of Side-Chain Density in Polyethylene Oxide (PEO) Superplasticizer Additives. Clays and Clay Minerals, 2016, 64, 732-742.	0.6	16
106	Effect of sodium tripolyphosphate on adsorbing behavior of polycarboxylate superplasticizer. Construction and Building Materials, 2016, 126, 617-623.	3.2	47
107	Mechanism of intercalation of polycarboxylate superplasticizer into montmorillonite. Applied Clay Science, 2016, 129, 40-46.	2.6	60
108	Effect of polycarboxylate superplasticiser adsorption on fluidity of cement–clay system. Materials Research Innovations, 2015, 19, S5-423-S5-428.	1.0	8

#	Article	IF	CITATIONS
109	Effect of competitive adsorption between polycarboxylate superplasticiser and sodium tripolyphosphate on cement paste fluidity. Advances in Cement Research, 2015, 27, 593-600.	0.7	15
110	Utilization of lithium slag as an admixture in blended cements: Physico-mechanical and hydration characteristics. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 129-133.	0.4	50
111	Effect of competitive adsorption between polycarboxylate superplasticiser and sodium tripolyphosphate on cement paste fluidity. Advances in Cement Research, 2015, 27, 593-600.	0.7	7
112	Effect of superplasticiser and sodium tripolyphosphate on fluidity of cement paste. Magazine of Concrete Research, 2014, 66, 1194-1200.	0.9	20
113	Stabilization/solidification on chromium (III) wastes by C3A and C3A hydrated matrix. Journal of Hazardous Materials, 2014, 268, 61-67.	6.5	35
114	Effect of competitive adsorption between sodium tripolyphosphate and naphthalene superplasticizer on fluidity of cement paste. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 334-340.	0.4	29
115	UTILIZATION OF OIL WELL-DERIVED DRILLING WASTE IN SHALE-BRICK PRODUCTION. Environmental Engineering and Management Journal, 2014, 13, 173-180.	0.2	1
116	Properties and hydration mechanism on high-strength anchorage grouting material for highway slope. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 1181-1185.	0.4	4
117	Effect of competitive adsorption between sodium gluconate and naphthalene-based superplasticiser on fluidity of cement paste. Magazine of Concrete Research, 2013, 65, 1212-1218.	0.9	11
118	Microstructure and mechanical properties of poly (vinyl chloride) modified by silica fume / acrylic core-shell impact modifier blends. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 886-891.	0.4	1
119	Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal. Bioresource Technology, 2011, 102, 9783-9787.	4.8	164
120	Influence of sintering temperature on the characteristics of shale brick containing oil well-derived drilling waste. Environmental Science and Pollution Research, 2011, 18, 1617-1622.	2.7	28
121	Solid Solution Mechanism of CO2O3 During C3S Formation. Open Materials Science Journal, 2011, 5, 118-122.	0.2	1
122	Model analysis of initial hydration and structure forming of Portland cement. Journal Wuhan University of Technology, Materials Science Edition, 2007, 22, 757-759.	0.4	1
123	Synthesis and optimization of a montmorillonite-tolerant zwitterionic polycarboxylate superplasticizer via Box-Behnken design. Clay Minerals, 0, , 1-9.	0.2	4