Suzanne Peyrottes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7997168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Trends in Nucleotide Synthesis. Chemical Reviews, 2016, 116, 7854-7897.	47.7	148
2	Characterization of a Gemcitabine-Resistant Murine Leukemic Cell Line. Clinical Cancer Research, 2004, 10, 5614-5621.	7.0	60
3	Specific Requirements for Vγ9VÎ′2 T Cell Stimulation by a Natural Adenylated Phosphoantigen. Journal of Immunology, 2009, 183, 3848-3857.	0.8	57
4	F1-Adenosine Triphosphatase Displays Properties Characteristic of an Antigen Presentation Molecule for Vγ9Vδ2 T Cells. Journal of Immunology, 2010, 184, 6920-6928.	0.8	55
5	Reliability of Antimalarial Sensitivity Tests Depends on Drug Mechanisms of Action. Journal of Clinical Microbiology, 2010, 48, 1651-1660.	3.9	53
6	Disulfide Prodrugs of Albitiazolium (T3/SAR97276): Synthesis and Biological Activities. Journal of Medicinal Chemistry, 2012, 55, 4619-4628.	6.4	51
7	Plasmodium Purine Metabolism and Its Inhibition by Nucleoside and Nucleotide Analogues. Journal of Medicinal Chemistry, 2019, 62, 8365-8391.	6.4	38
8	The synthesis of peptide-oligonucleotide conjugates by a fragment coupling approach. Tetrahedron, 1998, 54, 12513-12522.	1.9	37
9	S-Acyl-2-thioethyl Aryl Phosphotriester Derivatives as Mononucleotide Prodrugs. Journal of Medicinal Chemistry, 2000, 43, 4570-4574.	6.4	37
10	Development of a sensitive and selective LC/MS/MS method for the simultaneous determination of intracellular 1-beta-d-arabinofuranosylcytosine triphosphate (araCTP), cytidine triphosphate (CTP) and deoxycytidine triphosphate (dCTP) in a human follicular lymphoma cell line. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 1417-1425.	2.3	32
11	Identification and characterization of inhibitors of cytoplasmic 5′-nucleotidase cN-II issued from virtual screening. Biochemical Pharmacology, 2013, 85, 497-506.	4.4	29
12	Special feature of mixed phosphotriester derivatives of cytarabine. Bioorganic and Medicinal Chemistry, 2009, 17, 6340-6347.	3.0	28
13	Ex-Chiral-Pool Synthesis of β-Hydroxyphosphonate Nucleoside Analogues. European Journal of Organic Chemistry, 2007, 2007, 925-933.	2.4	26
14	Choline Analogues in Malaria Chemotherapy. Current Pharmaceutical Design, 2012, 18, 3454-66.	1.9	25
15	Identification of allosteric inhibitors of the ecto-5'-nucleotidase (CD73) targeting the dimer interface. PLoS Computational Biology, 2018, 14, e1005943.	3.2	25
16	Structural Insights into the Inhibition of Cytosolic 5′-Nucleotidase II (cN-II) by Ribonucleoside 5′-Monophosphate Analogues. PLoS Computational Biology, 2011, 7, e1002295.	3.2	24
17	CD73 inhibition by purine cytotoxic nucleoside analogue-based diphosphonates. European Journal of Medicinal Chemistry, 2018, 157, 1051-1055.	5.5	24
18	S-Acyl-2-Thioethyl Aryl Phosphotriester Derivatives of AZT:Â Synthesis, Antiviral Activity, and Stability Study. Journal of Medicinal Chemistry, 2003, 46, 782-793.	6.4	23

SUZANNE PEYROTTES

#	Article	IF	CITATIONS
19	Phenyl phosphotriester derivatives of AZT: Variations upon the SATE moiety. Bioorganic and Medicinal Chemistry, 2008, 16, 7321-7329.	3.0	23
20	Insights into the Soluble PEG-Supported Synthesis of Cytosine-Containing Nucleoside 5′-Mono-, Di-, and Triphosphates. Journal of Organic Chemistry, 2009, 74, 9165-9172.	3.2	23
21	Use of microwave irradiation for sugar and nucleoside phosphonates synthesis. Tetrahedron Letters, 2006, 47, 7719-7721.	1.4	22
22	A Chemical Proteomics Approach for the Search of Pharmacological Targets of the Antimalarial Clinical Candidate Albitiazolium in Plasmodium falciparum Using Photocrosslinking and Click Chemistry. PLoS ONE, 2014, 9, e113918.	2.5	22
23	Structure–activity relationships of β-hydroxyphosphonate nucleoside analogues as cytosolic 5′-nucleotidase II potential inhibitors: Synthesis, inÂvitro evaluation and molecular modeling studies. European Journal of Medicinal Chemistry, 2014, 77, 18-37.	5.5	21
24	Determination of the enzymatic activity of cytosolic 5′-nucleotidase cN-II in cancer cells: development of a simple analytical method and related cell line models. Analytical and Bioanalytical Chemistry, 2015, 407, 5747-5758.	3.7	20
25	Biolabile constructs for pronucleotide design. Journal of Organometallic Chemistry, 2005, 690, 2614-2625.	1.8	18
26	Identification of Noncompetitive Inhibitors of Cytosolic 5′-Nucleotidase II Using a Fragment-Based Approach. Journal of Medicinal Chemistry, 2015, 58, 9680-9696.	6.4	18
27	5′,6′â€Nucleoside Phosphonate Analogues Architecture: Synthesis and Comparative Evaluation towards Metabolic Enzymes. ChemMedChem, 2011, 6, 1094-1106.	3.2	17
28	New Bis-thiazolium Analogues as Potential Antimalarial Agents: Design, Synthesis, and Biological Evaluation. Journal of Medicinal Chemistry, 2013, 56, 496-509.	6.4	17
29	Developing an efficient route to the synthesis of nucleoside 1-alkynylphosphonates. Tetrahedron, 2009, 65, 6039-6046.	1.9	16
30	Vγ9Vδ2 T cell activation by strongly agonistic nucleotidic phosphoantigens. Cellular and Molecular Life Sciences, 2017, 74, 4353-4367.	5.4	16
31	β-Hydroxy- and β-Aminophosphonate Acyclonucleosides as Potent Inhibitors of <i>Plasmodium falciparum</i> Growth. Journal of Medicinal Chemistry, 2020, 63, 8069-8087.	6.4	16
32	Exploration of potential prodrug approach of the bis-thiazolium salts T3 and T4 for orally delivered antimalarials. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3953-3956.	2.2	15
33	Synthesis of 2′,3′-Dideoxynucleoside Phosphoesters Using H-Phosphonate Chemistry on Soluble Polymer Support. Journal of Organic Chemistry, 2011, 76, 997-1000.	3.2	15
34	An Alternative Pathway to Ribonucleoside β-Hydroxyphosphonate Analogues and Related Prodrugs. Organic Letters, 2013, 15, 4778-4781.	4.6	15
35	Straightforward Ballâ€Milling Access to Dinucleoside 5′,5′â€Polyphosphates via Phosphorimidazolide Intermediates. Chemistry - A European Journal, 2019, 25, 2477-2481.	3.3	15
36	Dramatic effect of the anomeric configuration on the thermal stability of duplex formed between novel dodecathymidine phosphoramidate (PNH2) and complementary DNA and RNA strands. Tetrahedron Letters, 1996, 37, 5869-5872.	1.4	14

#	Article	IF	CITATIONS
37	Beta-hydroxyphosphonate ribonucleoside analogues derived from 4-substituted-1,2,3-triazoles as IMP/GMP mimics: synthesis and biological evaluation. Beilstein Journal of Organic Chemistry, 2016, 12, 1476-1486.	2.2	14
38	Probing the reactivity of H-phosphonate derivatives for the hydrophosphonylation of various alkenes and alkynes under free-radical conditions. New Journal of Chemistry, 2016, 40, 5318-5324.	2.8	14
39	Synthesis of Substituted 5′â€Aminoadenosine Derivatives and Evaluation of Their Inhibitory Potential toward CD73. ChemMedChem, 2019, 14, 1431-1443.	3.2	14
40	4-Substituted-1,2,3-triazolo nucleotide analogues as CD73 inhibitors, their synthesis, in vitro screening, kinetic and in silico studies. Bioorganic Chemistry, 2021, 107, 104577.	4.1	13
41	Evidence that oxidative dephosphorylation by the nonheme Fe(<scp>II</scp>), αâ€ketoglutarate: <scp>UMP</scp> oxygenase occurs by stereospecific hydroxylation. FEBS Letters, 2017, 591, 468-478.	2.8	11
42	Quantification of 5â€2-monophosphate cytosine arabinoside (Ara-CMP) in cell extracts using liquid chromatography–electrospray mass spectrometry. Analytica Chimica Acta, 2006, 566, 178-184.	5.4	10
43	Synthesis of Pyrimidineâ€Containing Nucleoside βâ€(<i>R</i> / <i>S</i>)â€Hydroxyphosphonate Analogues. European Journal of Organic Chemistry, 2011, 2011, 3794-3802.	2.4	9
44	New Insight into the Mechanism of Accumulation and Intraerythrocytic Compartmentation of Albitiazolium, a New Type of Antimalarial. Antimicrobial Agents and Chemotherapy, 2014, 58, 5519-5527.	3.2	9
45	Lead optimization and biological evaluation of fragment-based cN-II inhibitors. European Journal of Medicinal Chemistry, 2019, 168, 28-44.	5.5	9
46	An Ecoâ€Friendly and Efficient Photoinduced Coupling of Alkenes and Alkynes with Hâ€Phosphinates and Other P(O)H Derivatives Under Freeâ€Radical Conditions. European Journal of Organic Chemistry, 2017, 2017, 3850-3855.	2.4	8
47	Oneâ€Pot Synthesis of Nucleotides and Conjugates in Aqueous Medium. European Journal of Organic Chemistry, 2017, 2017, 241-245.	2.4	8
48	Synthesis of (R)- and (S)-β-hydroxyphosphonate acyclonucleosides: structural analogues of Adefovir (PMEA). Tetrahedron: Asymmetry, 2011, 22, 1505-1511.	1.8	7
49	Aminobisphosphonates Synergize with Human Cytomegalovirus To Activate the Antiviral Activity of Vγ9Vδ2 Cells. Journal of Immunology, 2016, 196, 2219-2229.	0.8	7
50	Synthetic Strategies for Dinucleotides Synthesis. Molecules, 2019, 24, 4334.	3.8	7
51	2-(Substituted amino)-8-azachromones from 4,6-Diaryl-2-pyridones: A Synthetic Strategy toward Compounds of Broad Structural Diversity. Journal of Organic Chemistry, 2020, 85, 11778-11793.	3.2	7
52	Inclusion complexes of a nucleotide analogue with hydroxypropyl-beta-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 63, 11-16.	1.6	6
53	Synthesis and Evaluation of Bisâ€Thiazolium Salts as Potential Antimalarial Drugs. ChemMedChem, 2010, 5, 1102-1109.	3.2	6
54	Synthesis and study of (R)- and (S)-β-hydroxyphosphonate acyclonucleosides as structural analogues of (S)-HPMPC (cidofovir). New Journal of Chemistry, 2014, 38, 4736-4742.	2.8	6

SUZANNE PEYROTTES

#	Article	IF	CITATIONS
55	Synthesis of Aminomethylene- <i>gem</i> -bisphosphonates Containing an Aziridine Motif: Studies of the Reaction Scope and Insight into the Mechanism. Journal of Organic Chemistry, 2021, 86, 3107-3119.	3.2	6
56	Studies Towards the Synthesis of Peptide-Oligonucleotide Conjugates. Nucleosides & Nucleotides, 1999, 18, 1443-1448.	0.5	5
57	Determination and quantification of intracellular fludarabine triphosphate, cladribine triphosphate and clofarabine triphosphate by LC–MS/MS in human cancer cells. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1053, 101-110.	2.3	5
58	Improvement of the Synthesis of Sugar Phosphonates Using Microwave Irradiations. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1513-1515.	1.1	4
59	Exploring synthetic pathways for nucleosidic derivatives of potent phosphoantigens. New Journal of Chemistry, 2016, 40, 6046-6052.	2.8	4
60	Waterâ€Medium Synthesis of Nucleoside 5′â€Polyphosphates. Current Protocols in Nucleic Acid Chemistry, 2017, 69, 13.16.1-13.16.11.	0.5	4
61	An original pronucleotide strategy for the simultaneous delivery of two bioactive drugs. European Journal of Medicinal Chemistry, 2021, 216, 113315.	5.5	4
62	Supported Synthesis of Adenosine Nucleotides and Derivatives on a Benzene entered Tripodal Soluble Support. European Journal of Organic Chemistry, 2022, 2022, .	2.4	3
63	Decomposition of 3′â€azidoâ€2′,3′â€dideoxythymidine 5′â€monophosphate (AZTMP) prodrugs in bio studied by onâ€line solidâ€phase extraction coupled to liquid chromatography mass spectrometry. Biomedical Chromatography, 2009, 23, 1160-1168.	ological m 1.7	edia 2
64	New insights for the preparation of cytidine containing nucleotides using a soluble ether-linked polyethylene glycol support. New Journal of Chemistry, 2018, 42, 16441-16445.	2.8	2
65	One-pot synthesis of nucleotides in water medium. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 335-336.	1.6	2
66	Green approaches for the synthesis of nucleotides, their conjugates and analogues. Phosphorus, Sulfur and Silicon and the Related Elements, 2020, 195, 930-931.	1.6	2
67	Mononucleoside phosphorodithiolates as mononucleotide prodrugs. European Journal of Medicinal Chemistry, 2022, 227, 113914.	5.5	2
68	Synthesis and Studies of Potential Inhibitors of CD73 Based on a Triazole Scaffold. European Journal of Organic Chemistry, 2022, 2022, .	2.4	2
69	Synthesis and substrate properties towards HIV-1 reverse transcriptase of new diphosphate analogues of 9-[(2-phosphonomethoxy)ethyl]adenine. Antiviral Chemistry and Chemotherapy, 2018, 26, 204020661875763.	0.6	1
70	2'â€Derivatisation of 3'â€ <i>Câ€</i> Methyl Pyrimidine Nucleosides. European Journal of Organic Chemist 2021, 2021, 4007-4014.	.rv. 2.4	1
71	Rapid synthesis of carbonucleoside phophonate analogues as potential antiviral agents via a hydrophosphonylation reaction of ethynyl carbocyclic precursors. New Journal of Chemistry, 2018, 42, 974-979.	2.8	1
72	Synthesis and Biophysical Properties of Oligothymidylates Containing Alkoxyphosphoramidate Internucleoside Linkages. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 1061-1064.	1.1	0

#	Article	IF	CITATIONS
73	Chemistry of bisSATE Mononucleotide Prodrugs. Current Protocols in Nucleic Acid Chemistry, 2007, 29, Unit 15.3.	0.5	0
74	Exploring Prodrug Approaches for Albitiazolium and its Analogues. Current Topics in Medicinal Chemistry, 2014, 14, 1653-1667.	2.1	0
75	Alternative synthetic approaches for nucleotides and derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 0, , 1-4.	1.6	0
76	Synthesis of <i>N</i> -methylene phosphonate aziridines: reaction scope and mechanistic insights. New Journal of Chemistry, 2022, 46, 6453-6460.	2.8	0