
Alfonso Caballero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7996790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Research on properties and catalytic behaviour in CO hydrogenation at atmospheric and high pressure of bimetallic systems (10%Co + 0.5%Pd)/TiO2 (Al2O3). Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 589.	0.8	0
2	Unraveling the Mo/HZSM-5 reduction pre-treatment effect on methane dehydroaromatization reaction. Applied Catalysis B: Environmental, 2022, 312, 121382.	10.8	10
3	Elucidating the Promotional Effect of Cerium in the Dry Reforming of Methane. ChemCatChem, 2021, 13, 553-563.	1.8	20
4	Overcoming Pd–TiO ₂ Deactivation during H ₂ Production from Photoreforming Using Cu@Pd Nanoparticles Supported on TiO ₂ . ACS Applied Nano Materials, 2021, 4, 3204-3219.	2.4	17
5	Elucidating the nature of Mo species on ZSM-5 and its role in the methane aromatization reaction. Reaction Chemistry and Engineering, 2021, 6, 1265-1276.	1.9	8
6	Structural and surface considerations on Mo/ZSM-5 systems for methane dehydroaromatization reaction. Molecular Catalysis, 2020, 486, 110787.	1.0	15
7	Support effects on NiO-based catalysts for the oxidative dehydrogenation (ODH) of ethane. Catalysis Today, 2019, 333, 10-16.	2.2	35
8	Bimetallic Ni-Co/SBA-15 catalysts for reforming of ethanol: How cobalt modifies the nickel metal phase and product distribution. Molecular Catalysis, 2018, 449, 122-130.	1.0	31
9	Understanding the differences in catalytic performance for hydrogen production of Ni and Co supported on mesoporous SBA-15. Catalysis Today, 2018, 307, 224-230.	2.2	16
10	Nickel Particles Selectively Confined in the Mesoporous Channels of SBA-15 Yielding a Very Stable Catalyst for DRM Reaction. Journal of Physical Chemistry B, 2018, 122, 500-510.	1.2	45
11	Improving the direct synthesis of hydrogen peroxide from hydrogen and oxygen over Au-Pd/SBA-15 catalysts by selective functionalization. Molecular Catalysis, 2018, 445, 142-151.	1.0	43
12	Revealing the substitution mechanism in Eu ³⁺ :CaMoO ₄ and Eu ³⁺ ,Na ⁺ :CaMoO ₄ phosphors. Journal of Materials Chemistry C, 2018, 6, 12830-12840.	2.7	34
13	Preferential oxidation of CO on a La-Co-Ru perovskite-type oxide catalyst. Catalysis Communications, 2017, 92, 75-79.	1.6	8
14	Analysis of Ni species formed on zeolites, mesoporous silica and alumina supports and their catalytic behavior in the dry reforming of methane. Reaction Kinetics, Mechanisms and Catalysis, 2017, 121, 255-274.	0.8	25
15	Redox and Catalytic Properties of Promoted NiO Catalysts for the Oxidative Dehydrogenation of Ethane. Journal of Physical Chemistry C, 2017, 121, 25132-25142.	1.5	36
16	Photochemical methane partial oxidation to methanol assisted by H2O2. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 349, 216-223.	2.0	39
17	Cobalt Carbide Identified as Catalytic Site for the Dehydrogenation of Ethanol to Acetaldehyde. ACS Catalysis, 2017, 7, 5243-5247.	5.5	47
18	Identification of Outer and Inner Nickel Particles in a Mesoporous Support: How the Channels Modify the Reducibility of Ni/SBAâ€15 Catalysts. ChemNanoMat. 2017. 3, 94-97.	1.5	18

#	Article	IF	CITATIONS
19	Nickel catalyst with outstanding activity in the DRM reaction prepared by high temperature calcination treatment. International Journal of Hydrogen Energy, 2016, 41, 8459-8469.	3.8	22
20	Structural and chemical reactivity modifications of a cobalt perovskite induced by Sr-substitution. An in situ XAS study. Materials Chemistry and Physics, 2015, 151, 29-33.	2.0	8
21	Chromium removal on chitosan-based sorbents – An EXAFS/XANES investigation of mechanism. Materials Chemistry and Physics, 2014, 146, 412-417.	2.0	50
22	Spinodal decomposition and precipitation in Cu–Cr nanocomposite. Journal of Alloys and Compounds, 2014, 587, 670-676.	2.8	26
23	Promoting effect of Ce and Mg cations in Ni/Al catalysts prepared from hydrotalcites for the dry reforming of methane. Reaction Kinetics, Mechanisms and Catalysis, 2014, 111, 259-275.	0.8	32
24	In situ XAS study of an improved natural phosphate catalyst for hydrogen production by reforming of methane. Applied Catalysis B: Environmental, 2014, 150-151, 459-465.	10.8	17
25	Promotional Effect of the Base Metal on Bimetallic Au–Ni/CeO ₂ Catalysts Prepared from Core–Shell Nanoparticles. ACS Catalysis, 2013, 3, 2169-2180.	5.5	36
26	In situ spectroscopic characterization of some LaNi1-xCoxO3 perovskite catalysts active for CH4 reforming reactions. Materials Research Society Symposia Proceedings, 2012, 1446, 73.	0.1	1
27	Preparation of nanostructured nickel aluminate spinel powder from spent NiO/Al2O3 catalyst by mechano-chemical synthesis. Advanced Powder Technology, 2012, 23, 833-838.	2.0	38
28	LaNiO3 as a precursor of Ni/La2O3 for CO2 reforming of CH4: Effect of the presence of an amorphous NiO phase. Applied Catalysis B: Environmental, 2012, 123-124, 324-332.	10.8	116
29	In Situ XAS Study of Synergic Effects on Ni–Co/ZrO ₂ Methane Reforming Catalysts. Journal of Physical Chemistry C, 2012, 116, 2919-2926.	1.5	126
30	Study of Oxygen Reactivity in La1â^'x Sr x CoO3â^'δPerovskites for Total Oxidation of Toluene. Catalysis Letters, 2012, 142, 408-416.	1.4	49
31	Modifying the Size of Nickel Metallic Particles by H ₂ /CO Treatment in Ni/ZrO ₂ Methane Dry Reforming Catalysts. ACS Catalysis, 2011, 1, 82-88.	5.5	128
32	Influence of Al2O3 reinforcement on precipitation kinetic of Cu–Cr nanocomposite. Thermochimica Acta, 2011, 526, 222-228.	1.2	12
33	Effect of thermal treatments on the catalytic behaviour in the CO preferential oxidation of a CuO–CeO2–ZrO2 catalyst with a flower-like morphology. Applied Catalysis B: Environmental, 2011, 102, 627-637.	10.8	98
34	Chemical and electronic characterization of cobalt in a lanthanum perovskite. Effects of strontium substitution. Journal of Solid State Chemistry, 2010, 183, 27-32.	1.4	36
35	Study of nanostructured Ni/CeO2 catalysts prepared by combustion synthesis in dry reforming of methane. Applied Catalysis A: General, 2010, 384, 1-9.	2.2	112
36	Synthesis and characterization of a LaNiO3 perovskite as precursor for methane reforming reactions catalysts. Applied Catalysis B: Environmental, 2010, 93, 346-353.	10.8	189

#	Article	IF	CITATIONS
37	Complete n-hexane oxidation over supported Mn–Co catalysts. Applied Catalysis B: Environmental, 2010, 94, 46-54.	10.8	144
38	Operando XAS and Raman study on the structure of a supported vanadium oxide catalyst during the oxidation of H2S to sulphur. Catalysis Today, 2010, 155, 296-301.	2.2	25
39	Room-Temperature Reaction of Oxygen with Gold: An In situ Ambient-Pressure X-ray Photoelectron Spectroscopy Investigation. Journal of the American Chemical Society, 2010, 132, 2858-2859.	6.6	79
40	In situ spectroscopic detection ofSMSI effect in a Ni/CeO ₂ system: hydrogen-induced burial and dig out of metallic nickel. Chemical Communications, 2010, 46, 1097-1099.	2.2	140
41	Co3O4Â+ÂCeO2/SiO2 Catalysts for n-Hexane and CO Oxidation. Catalysis Letters, 2009, 129, 149-155.	1.4	25
42	Reactivity of LaNi1â^'y Co y O3â^'δ Perovskite Systems in the Deep Oxidation of Toluene. Catalysis Letters, 2009, 131, 164-169.	1.4	18
43	Near-ambient X-ray photoemission spectroscopy and kinetic approach to the mechanism of carbon monoxide oxidation over lanthanum substituted cobaltites. Catalysis Communications, 2009, 10, 1898-1902.	1.6	24
44	Morphology changes induced by strong metal–support interaction on a Ni–ceria catalytic system. Journal of Catalysis, 2008, 257, 307-314.	3.1	202
45	Reactivity of lanthanum substituted cobaltites toward carbon particles. Journal of Catalysis, 2008, 257, 334-344.	3.1	81
46	Removal of NO in NO/N2, NO/N2/O2, NO/CH4/N2, and NO/CH4/O2/N2Systems by Flowing Microwave Discharges. Journal of Physical Chemistry A, 2007, 111, 1057-1065.	1.1	25
47	Plasma catalysis over lanthanum substituted perovskites. Catalysis Communications, 2007, 8, 1739-1742.	1.6	16
48	XPS investigation of the reaction of carbon with NO, O2, N2 and H2O plasmas. Carbon, 2007, 45, 89-96.	5.4	222
49	Plasma catalysis with perovskite-type catalysts for the removal of NO and CH4 from combustion exhausts. Journal of Catalysis, 2007, 247, 288-297.	3.1	51
50	An in situ XAS study of Cu/ZrO catalysts under de-NO reaction conditions. Journal of Catalysis, 2005, 235, 295-301.	3.1	42
51	Plasma Chemistry of NO in Complex Gas Mixtures Excited with a Surfatron Launcher. Journal of Physical Chemistry A, 2005, 109, 4930-4938.	1.1	29
52	XPS Study of Interface and Ligand Effects in Supported Cu2O and CuO Nanometric Particles. Journal of Physical Chemistry B, 2005, 109, 7758-7765.	1.2	94
53	Reforming of ethanol in a microwave surface-wave plasma discharge. Applied Physics Letters, 2004, 85, 4004-4006.	1.5	74
54	Structural, Optical, and Photoelectrochemical Properties of Mn+â^'TiO2 Model Thin Film Photocatalysts. Journal of Physical Chemistry B, 2004, 108, 17466-17476.	1.2	164

#	Article	IF	CITATIONS
55	Chemical state and distribution of Mn ions in Mn-doped $\hat{I}\pm$ -Al 2 O 3 solid solutions prepared in the absence and the presence of fluxes. Journal of the European Ceramic Society, 2004, 24, 3057-3062.	2.8	35
56	Oxidation state and localization of chromium ions in Cr-doped cassiterite and Cr-doped malayaite. Acta Materialia, 2003, 51, 2371-2381.	3.8	68
57	Acicular Metallic Particles Obtained from Al-Doped Goethite Precursors. Chemistry of Materials, 2003, 15, 951-957.	3.2	10
58	Low-temperature preparation and structural characterization of Pr-doped ceria solid solutions. Journal of Materials Research, 2002, 17, 797-804.	1.2	30
59	X-ray Photoelectron Spectroscopy and Infrared Study of the Nature of Cu Species in Cu/ZrO2de-NOx Catalysts. Journal of Physical Chemistry B, 2002, 106, 10185-10190.	1.2	44
60	Interface Effects for Cu, CuO, and Cu2O Deposited on SiO2and ZrO2. XPS Determination of the Valence State of Copper in Cu/SiO2and Cu/ZrO2Catalysts. Journal of Physical Chemistry B, 2002, 106, 6921-6929.	1.2	526
61	Structure and chemistry of SiOx (x<2) systems. Vacuum, 2002, 67, 491-499.	1.6	22
62	Synthesis and Structural Characterization by Xâ€ray Absorption Spectroscopy of Tinâ€Đoped Mullite Solid Solutions. Journal of the American Ceramic Society, 2002, 85, 1910-1914.	1.9	7
63	Plate reactor for testing catalysts in the form of thin films. Applied Catalysis B: Environmental, 2001, 31, L5-L10.	10.8	10
64	Structural modifications produced by the incorporation of Ar within the lattice of Fe2O3 thin films prepared by ion beam induced chemical vapour deposition. Acta Materialia, 2000, 48, 4555-4561.	3.8	9
65	Amorphisation and related structural effects in thin films prepared by ion beam assisted methods. Surface and Coatings Technology, 2000, 125, 116-123.	2.2	15
66	Preparation by pyrolysis of aerosols and structural characterization of Fe-doped mullite powders. Materials Research Bulletin, 2000, 35, 775-788.	2.7	30
67	TEM, EELS and EFTEM characterization of nickel nanoparticles encapsulated in carbon. Journal of Materials Chemistry, 2000, 10, 715-721.	6.7	40
68	Mixed (Oxygen Ion and nâ€ᠯype) Conductivity and Structural Characterization of Titaniaâ€Doped Stabilized Tetragonal Zirconia. Journal of the Electrochemical Society, 1999, 146, 2425-2434.	1.3	24
69	SnO2 thin films prepared by ion beam induced CVD: preparation and characterization by X-ray absorption spectroscopy. Thin Solid Films, 1999, 353, 113-123.	0.8	42
70	The effects of the NaF flux on the oxidation state and localisation of praseodymium in Pr-doped zircon pigments. Journal of the European Ceramic Society, 1999, 19, 641-648.	2.8	37
71	Structure–electrical properties relationships in TiO2-doped stabilized tetragonal zirconia ceramics. Ceramics International, 1999, 25, 639-648.	2.3	12
72	Structural characterization of partially amorphous SnO2 nanoparticles by factor analysis of XAS and FT-IR spectra. Solid State Ionics, 1999, 116, 117-127.	1.3	38

#	Article	IF	CITATIONS
73	Structure and electrical behavior in air of TiO 2 -doped stabilized tetragonal zirconia ceramics. Applied Physics A: Materials Science and Processing, 1999, 68, 41-48.	1.1	11
74	Preparation, characterization and thermal evolution of oxygen passivated nanocrystalline cobalt. Journal of Materials Chemistry, 1999, 9, 1011-1017.	6.7	22
75	Valence and Localization of Praseodymium in Pr-Doped Zircon. Journal of Solid State Chemistry, 1998, 139, 412-415.	1.4	41
76	Characterisation of passivated aluminium nanopowders: An XPS and TEM/EELS study. Journal of the European Ceramic Society, 1998, 18, 1195-1200.	2.8	27
77	Characterization of nanophase Alâ€oxide/Al powders by electron energyâ€loss spectroscopy. Journal of Microscopy, 1998, 191, 212-220.	0.8	10
78	Synchrotron Photoemission Characterization of TiO2Supported on SiO2. Langmuir, 1998, 14, 4908-4914.	1.6	29
79	In situ study by XAS of the sulfidation of industrial catalysts: the Pt and PTReAl2O3 systems. Applied Catalysis A: General, 1997, 162, 171-180.	2.2	23
80	Ion-Beam-Induced CVD: An Alternative Method of Thin Film Preparation. Chemical Vapor Deposition, 1997, 3, 219-226.	1.4	27
81	Adsorption and oxidation of K deposited on graphite. Surface Science, 1996, 364, 253-265.	0.8	33
82	Structural characterization of PbTiO3 thin films prepared by ion beam induced CVD and evaporation of lead. Thin Solid Films, 1996, 272, 99-106.	0.8	17
83	Contribution of the xâ€ray absorption spectroscopy to study TiO2thin films prepared by ion beam induced chemical vapor deposition. Journal of Applied Physics, 1995, 77, 591-597.	1.1	22
84	Experimental set-up for in-situ X-ray absorption spectroscopy analysis of photochemical reactions: the photocatalytic reduction of gold on titania. Journal of Photochemistry and Photobiology A: Chemistry, 1994, 78, 169-172.	2.0	11
85	Photoelectron spectroscopy of metal oxide particles: size and support effects. Vacuum, 1994, 45, 1085-1086.	1.6	20
86	XAS and XRD structural studies of titanium oxide thin films prepared by ion beam induced CVD. Thin Solid Films, 1994, 241, 175-178.	0.8	14
87	In situ EXAFS studies of modifications to supported metallic catalysts under reactive atmospheres. Catalysis Letters, 1993, 20, 1-13.	1.4	14
88	In situ EXAFS study of the effect of hydrocarbon deposition over Pt/Al2O3and Pt–Re/Al2O3catalysts. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 159-164.	1.7	9
89	Generation of homogeneous rhodium particles by photoreduction of rhodium(III) on titania colloids grafted on silica. Langmuir, 1993, 9, 121-125.	1.6	14
90	Size and support effects in the photoelectron spectra of small TiO2 particles. Surface and Interface Analysis, 1992, 18, 392-396.	0.8	42

#	Article	IF	CITATIONS
91	The state of nickel in Ni/SiO2 and Ni/TiO2-calcined catalysts. Journal of Catalysis, 1992, 136, 415-422.	3.1	31
92	Effect of chlorine in the formation of PtRe alloys in PtRe/Al2O3 catalysts. Journal of Catalysis, 1989, 115, 567-579.	3.1	43
93	Effect of consecutive and alternative oxidation and reduction treatments on the interactions between titania (anatase and rutile) and copper. Journal of Catalysis, 1988, 113, 120-128.	3.1	42
94	The selection of experimental conditions in temperature-programmed reduction experiments. Journal of the Chemical Society Faraday Transactions I, 1988, 84, 2369.	1.0	234