Etienne-Pascal Journet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7996779/publications.pdf

Version: 2024-02-01

			172457	1	189892
ı	51	6,343	29		50
	papers	citations	h-index		g-index
	53	53	53		4746
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	A surrogate model based on feature selection techniques and regression learners to improve soybean yield prediction in southern France. Computers and Electronics in Agriculture, 2022, 192, 106578.	7.7	17
2	THE 4 C APPROACH AS A WAY TO UNDERSTAND SPECIES INTERACTIONS DETERMINING INTERCROPPING PRODUCTIVITY. Frontiers of Agricultural Science and Engineering, 2021, .	1.4	20
3	Plant nitrogen nutrition status in intercrops– a review of concepts and methods. European Journal of Agronomy, 2021, 124, 126229.	4.1	19
4	Interspecific interactions regulate plant reproductive allometry in cereal–legume intercropping systems. Journal of Applied Ecology, 2021, 58, 2579-2589.	4.0	6
5	Cultivar Grain Yield in Durum Wheat-Grain Legume Intercrops Could Be Estimated From Sole Crop Yields and Interspecific Interaction Index. Frontiers in Plant Science, 2021, 12, 733705.	3.6	12
6	Hostâ€specific competitiveness to form nodules in <i>Rhizobium leguminosarum</i> symbiovar <i>viciae</i> . New Phytologist, 2020, 226, 555-568.	7.3	33
7	Developmental Modulation of Root Cell Wall Architecture Confers Resistance to an Oomycete Pathogen. Current Biology, 2020, 30, 4165-4176.e5.	3.9	17
8	Contrasted response to climate change of winter and spring grain legumes in southwestern France. Field Crops Research, 2020, 259, 107967.	5.1	5
9	Calibration and evaluation of the STICS soil-crop model for faba bean to explain variability in yield and N2 fixation. European Journal of Agronomy, 2019, 104, 63-77.	4.1	25
10	Peer-Reviewed Literature on Grain Legume Species in the WoS (1980–2018): A Comparative Analysis of Soybean and Pulses. Sustainability, 2019, 11, 6833.	3.2	20
11	The genetics underlying natural variation of plant–plant interactions, a beloved but forgotten member of the family of biotic interactions. Plant Journal, 2018, 93, 747-770.	5.7	65
12	Purification of Nongreen Plastids (Proplastids and Amyloplasts) from Angiosperms, and Isolation of Their Envelope Membranes. Methods in Molecular Biology, 2018, 1829, 145-164.	0.9	1
13	Yield gap analysis extended to marketable grain reveals the profitability of organic lentil-spring wheat intercrops. Agronomy for Sustainable Development, 2018, 38, 1.	5.3	21
14	Phosphorus availability and microbial community in the rhizosphere of intercropped cereal and legume along a P-fertilizer gradient. Plant and Soil, 2016, 407, 119-134.	3.7	83
15	Enhancing Yields in Organic Crop Production by Eco-Functional Intensification. Sustainable Agriculture Research, 2015, 4, 42.	0.3	41
16	Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design. Agronomy for Sustainable Development, 2015, 35, 607-623.	5. 3	234
17	How to implement biodiversity-based agriculture to enhance ecosystem services: a review. Agronomy for Sustainable Development, 2015, 35, 1259-1281.	5.3	388
18	Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agronomy for Sustainable Development, 2015, 35, 911-935.	5.3	453

#	Article	IF	Citations
19	Is there an associational resistance of winter pea–durum wheat intercrops towards <i><scp>A</scp>cyrthosiphon pisum </i> <scp>H</scp> arris?. Journal of Applied Entomology, 2014, 138, 577-585.	1.8	14
20	IPD3 Controls the Formation of Nitrogen-Fixing Symbiosomes in Pea and <i>Medicago</i> Spp Molecular Plant-Microbe Interactions, 2011, 24, 1333-1344.	2.6	143
21	Adaptation of <i>Medicago truncatula </i> to nitrogen limitation is modulated via local and systemic nodule developmental responses. New Phytologist, 2010, 185, 817-828.	7. 3	140
22	A putative transporter is essential for integrating nutrient and hormone signaling with lateral root growth and nodule development in <i>Medicago truncatula</i> . Plant Journal, 2010, 62, 100-112.	5.7	112
23	<i>api</i> , A Novel <i>Medicago truncatula</i> Symbiotic Mutant Impaired in Nodule Primordium Invasion. Molecular Plant-Microbe Interactions, 2008, 21, 535-546.	2.6	38
24	Evidence for the Involvement in Nodulation of the Two Small Putative Regulatory Peptide-Encoding Genes <i>MtRALFL1</i> and <i>MtDVL1</i> Molecular Plant-Microbe Interactions, 2008, 21, 1118-1127.	2.6	68
25	The Medicago truncatula Lysine Motif-Receptor-Like Kinase Gene Family Includes NFP and New Nodule-Expressed Genes. Plant Physiology, 2006, 142, 265-279.	4.8	467
26	MtENOD11 Gene Activation During Rhizobial Infection and Mycorrhizal Arbuscule Development Requires a Common AT-Rich-Containing Regulatory Sequence. Molecular Plant-Microbe Interactions, 2005, 18, 1269-1276.	2.6	61
27	The Medicago truncatula SUNN Gene Encodes a CLV1-like Leucine-rich Repeat Receptor Kinase that Regulates Nodule Number and Root Length. Plant Molecular Biology, 2005, 58, 809-822.	3.9	399
28	Pharmacological Evidence That Multiple Phospholipid Signaling Pathways Link Rhizobium Nodulation Factor Perception in Medicago truncatula Root Hairs to Intracellular Responses, Including Ca2+ Spiking and Specific ENOD Gene Expression. Plant Physiology, 2004, 136, 3582-3593.	4.8	109
29	A Putative Ca2+ and Calmodulin-Dependent Protein Kinase Required for Bacterial and Fungal Symbioses. Science, 2004, 303, 1361-1364.	12.6	697
30	Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucleic Acids Research, 2002, 30, 5579-5592.	14.5	193
31	The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biology, 2002, 2, 1.	3.6	183
32	Medicago truncatula ENOD11: A Novel RPRP-Encoding Early Nodulin Gene Expressed During Mycorrhization in Arbuscule-Containing Cells. Molecular Plant-Microbe Interactions, 2001, 14, 737-748.	2.6	254
33	Génomique de la légumineuse modÃ"le Medicago truncatula : état des lieux et perspectives. Oleagineux Corps Gras Lipides, 2001, 8, 478-484.	0.2	6
34	Four Genes of Medicago truncatula Controlling Components of a Nod Factor Transduction Pathway. Plant Cell, 2000, 12, 1647.	6.6	11
35	Four Genes of Medicago truncatula Controlling Components of a Nod Factor Transduction Pathway. Plant Cell, 2000, 12, 1647-1665.	6.6	519
36	MtENOD20, a Nod Factor-Inducible Molecular Marker for Root Cortical Cell Activation. Molecular Plant-Microbe Interactions, 1999, 12, 604-614.	2.6	70

#	Article	IF	CITATIONS
37	Rhizobium Nod Factor Signaling: Evidence for a G Protein-Mediated Transduction Mechanism. Plant Cell, 1998, 10, 659.	6.6	4
38	Rhizobium Nod Factor Signaling: Evidence for a G Protein–Mediated Transduction Mechanism. Plant Cell, 1998, 10, 659-671.	6.6	163
39	Rhizobium meliloti Nod factors elicit cell-specific transcription of the ENOD12 gene in transgenic alfalfa. Plant Journal, 1994, 6, 241-249.	5.7	167
40	ENOD12Gene Expression as a Molecular Marker for Comparing Rhizobium-Dependent and -Independent Nodulation in Alfalfa. Molecular Plant-Microbe Interactions, 1994, 7, 740.	2.6	25
41	Rhizobium meliloti elicits transient expression of the early nodulin gene ENOD12 in the differentiating root epidermis of transgenic alfalfa Plant Cell, 1992, 4, 1199-1211.	6.6	193
42	Synchronous expression of leghaemoglobin genes inMedicago truncatula during nitrogen-fixing root nodule development and response to exogenously supplied nitrate. Plant Molecular Biology, 1991, 17, 335-349.	3.9	63
43	[23] Isolation of plastids from buds of cauliflower (Brassica oleracea L.). Methods in Enzymology, 1987, 148, 234-240.	1.0	7
44	Electron Transfer and Oxidative Phosphorylation in Plant Mitochondria., 1987,, 177-211.		3
45	Lipid Distribution and Synthesis Within the Plant Cell. , 1987, , 255-263.		7
46	Enzymic Capacities of Purified Cauliflower Bud Plastids for Lipid Synthesis and Carbohydrate Metabolism. Plant Physiology, 1985, 79, 458-467.	4.8	183
47	Mechanisms of Citrate Oxidation by Percoll-Purified Mitochondria from Potato Tuber. Plant Physiology, 1983, 72, 802-808.	4.8	14
48	Glutamate metabolism triggered by oxaloacetate in intact plant mitochondria. Archives of Biochemistry and Biophysics, 1982, 214, 366-375.	3.0	28
49	Purification of plant mitochondria by isopycnic centrifugation in density gradients of Percoll. Archives of Biochemistry and Biophysics, 1982, 217, 312-323.	3.0	332
50	Role of Glutamate-oxaloacetate Transaminase and Malate Dehydrogenase in the Regeneration of NAD ⁺ for Glycine Oxidation by Spinach leaf Mitochondria. Plant Physiology, 1981, 67, 467-469.	4.8	92
51	Effect of NAD+ on Malate Oxidation in Intact Plant Mitochondria. Plant Physiology, 1980, 66, 225-229.	4.8	111