
Nicola Pecchioni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7996754/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Beneficial Effects of Eruca sativa Defatted Seed Meal on Visceral Pain and Intestinal Damage Resulting from Colitis in Rats. Foods, 2022, 11, 580.	1.9	4
2	Nitrogen Use Efficiency in Durum Wheat (Triticum durum Desf.) Grown under Semiarid Conditions in Algeria. Agronomy, 2022, 12, 1284.	1.3	2
3	QTL Analysis of Five Morpho-Physiological Traits in Bread Wheat Using Two Mapping Populations Derived from Common Parents. Genes, 2021, 12, 604.	1.0	7
4	Genetic and Management Effects on Barley Yield and Phenology in the Mediterranean Basin. Frontiers in Plant Science, 2021, 12, 655406.	1.7	12
5	Genomic Approaches to Identify Molecular Bases of Crop Resistance to Diseases and to Develop Future Breeding Strategies. International Journal of Molecular Sciences, 2021, 22, 5423.	1.8	11
6	The novel heptyl phorolic acid cannabinoids content in different Cannabis sativa L. accessions. Talanta, 2021, 235, 122704.	2.9	7
7	Influence of CNV on transcript levels of HvCBF genes at Fr-H2 locus revealed by resequencing in resistant barley cv. â€~Nure' and expression analysis. Plant Science, 2020, 290, 110305.	1.7	5
8	Characterization of Celiac Disease-Related Epitopes and Gluten Fractions, and Identification of Associated Loci in Durum Wheat. Agronomy, 2020, 10, 1231.	1.3	6
9	Influence of environmental and genetic factors on content of toxic and immunogenic wheat gluten peptides. European Journal of Agronomy, 2020, 118, 126091.	1.9	10
10	Quantitative trait loci for agronomic traits in tetraploid wheat for enhancing grain yield in Kazakhstan environments. PLoS ONE, 2020, 15, e0234863.	1.1	19
11	Genome-Wide Association Mapping of Prostrate/Erect Growth Habit in Winter Durum Wheat. International Journal of Molecular Sciences, 2020, 21, 394.	1.8	17
12	Changes in yield components, morphological, physiological and fruit quality traits in processing tomato cultivated in Italy since the 1930's. Scientia Horticulturae, 2019, 257, 108726.	1.7	32
13	Anthocyanin profile and antioxidant capacity in coloured barley. International Journal of Food Science and Technology, 2019, 54, 2478-2486.	1.3	18
14	The impact of climate change on barley yield in the Mediterranean basin. European Journal of Agronomy, 2019, 106, 1-11.	1.9	93
15	Durum wheat genome highlights past domestication signatures and future improvement targets. Nature Genetics, 2019, 51, 885-895.	9.4	576
16	Carbon footprint and energetic analysis of tomato production in the organic vs the conventional cropping systems in Southern Italy. Journal of Cleaner Production, 2019, 220, 836-845.	4.6	49
17	Technological Quality and Nutritional Value of Two Durum Wheat Varieties Depend on Both Genetic and Environmental Factors. Journal of Agricultural and Food Chemistry, 2019, 67, 2384-2395.	2.4	29
18	Comparison of gluten peptides and potential prebiotic carbohydrates in old and modern Triticum turgidum ssp. genotypes. Food Research International, 2019, 120, 568-576.	2.9	21

#	Article	IF	CITATIONS
19	Effects of solid and liquid digestate for hydroponic baby leaf lettuce (Lactuca sativa L.) cultivation. Scientia Horticulturae, 2019, 244, 172-181.	1.7	66
20	Physiological responses to chilling in cultivars of processing tomato released and cultivated over the past decades in Southern Europe. Scientia Horticulturae, 2018, 231, 118-125.	1.7	26
21	Mineral composition of durum wheat grain and pasta under increasing atmospheric CO2 concentrations. Food Chemistry, 2018, 242, 53-61.	4.2	29
22	Evaluation of two groups of quinoa (Chenopodium quinoa Willd.) accessions with different seed colours for adaptation to the Mediterranean environment. Crop and Pasture Science, 2018, 69, 1264.	0.7	23
23	Testing the influence of digestate from biogas on growth and volatile compounds of basil (Ocimum) Tj ETQq1 1 Medicinal and Aromatic Plants, 2018, 11, 18-26.	0.784314 0.9	rgBT /Over o 20
24	Phenolic acids profile, nutritional and phytochemical compounds, antioxidant properties in colored barley grown in southern Italy. Food Research International, 2018, 113, 221-233.	2.9	50
25	Transcriptome profiling of short-term response to chilling stress in tolerant and sensitive Oryza sativa ssp. Japonica seedlings. Functional and Integrative Genomics, 2018, 18, 627-644.	1.4	34
26	Genetic dissection of the relationships between grain yield components by genome-wide association mapping in a collection of tetraploid wheats. PLoS ONE, 2018, 13, e0190162.	1.1	85
27	Pyramiding <i>Ty</i> - <i>1</i> /i>/ <i>Ty</i> - <i>3</i> and <i>Ty</i> - <i>2</i> in tomato hybrids dramatically inhibits symptom expression and accumulation of tomato yellow leaf curl disease inducing viruses. Archives of Phytopathology and Plant Protection, 2017, 50, 213-227.	0.6	33
28	The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments. BMC Genomics, 2017, 18, 122.	1.2	72
29	Biomass production and dry matter partitioning of processing tomato under organic vs conventional cropping systems in a Mediterranean environment. Scientia Horticulturae, 2017, 224, 163-170.	1.7	52
30	Agronomic and molecular evaluation of cocksfoot and tall fescue cultivars for adaptation to an Algerian drought-prone environment. Euphytica, 2016, 212, 371-386.	0.6	8
31	Evaluation of Cucurbita pepo germplasm for staminate flower production and adaptation to the frozen food industry. Scientia Horticulturae, 2016, 213, 321-330.	1.7	3
32	Copy number variation at the HvCBF4–HvCBF2 genomic segment is a major component of frost resistance in barley. Plant Molecular Biology, 2016, 92, 161-175.	2.0	45
33	Use of Spent Coffee Ground Compost in Peat-Based Growing Media for the Production of Basil and Tomato Potting Plants. Communications in Soil Science and Plant Analysis, 2016, 47, 356-368.	0.6	72
34	Detection of Singleâ€feature Polymorphisms (SFPs) between two tomato varieties and their application in defining the introgressions of resistance loci. Plant Breeding, 2015, 134, 226-232.	1.0	1
35	Physiological responses of processing tomato in organic and conventional Mediterranean cropping systems. Scientia Horticulturae, 2015, 190, 161-172.	1.7	39
36	Brachypodium as a Model for Grass and Cereal Diseases. Plant Genetics and Genomics: Crops and Models, 2015, , 275-290.	0.3	0

#	Article	IF	CITATIONS
37	Pelleting is a successful method to eliminate the presence of Clostridium spp. from the digestate of biogas plants. Biomass and Bioenergy, 2015, 81, 479-482.	2.9	28
38	CNV and Structural Variation in Plants: Prospects of NGS Approaches. , 2015, , 211-232.		8
39	The barley Frost resistance-H2 locus. Functional and Integrative Genomics, 2014, 14, 85-100.	1.4	19
40	Candidate gene expression profiling in two contrasting tomato cultivars under chilling stress. Biologia Plantarum, 2014, 58, 283-295.	1.9	26
41	QTLs for barley yield adaptation to Mediterranean environments in the â€~Nure'Â×Ââ€~Tremois' biparer population. Euphytica, 2014, 197, 73-86.	ntal 0.6	74
42	Update on the genomics and basic biology of Brachypodium. Trends in Plant Science, 2014, 19, 414-418.	4.3	60
43	Characterization of an Italian rice germplasm collection with genetic markers useful for breeding to improve eating and cooking quality. Euphytica, 2013, 194, 383-399.	0.6	14
44	Genome-wide association mapping of frost tolerance in barley (Hordeum vulgare L.). BMC Genomics, 2013, 14, 424.	1.2	101
45	Determinants of barley grain yield in drought-prone Mediterranean environments. Italian Journal of Agronomy, 2013, 8, 1.	0.4	17
46	A major QTL for resistance to soil-borne cereal mosaic virus derived from an old Italian durum wheat cultivar. Journal of Plant Interactions, 2012, 7, 290-300.	1.0	14
47	QTLs for resistance to the false brome rust Puccinia brachypodii in the model grass Brachypodium distachyon L Genome, 2012, 55, 152-163.	0.9	28
48	Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nature Genetics, 2012, 44, 1388-1392.	9.4	477
49	Effect of the nud gene on grain yield in barley. Czech Journal of Genetics and Plant Breeding, 2012, 48, 10-22.	0.4	20
50	lodine uptake and distribution in horticultural and fruit tree species. Italian Journal of Agronomy, 2012, 7, 32.	0.4	32
51	Determinants of barley grain yield in a wide range of Mediterranean environments. Field Crops Research, 2011, 120, 169-178.	2.3	73
52	Inside the CBF locus in Poaceae. Plant Science, 2011, 180, 39-45.	1.7	60
53	Mixed model association scans of multi-environmental trial data reveal major loci controlling yield and yield related traits in Hordeum vulgare in Mediterranean environments. Theoretical and Applied Genetics, 2011, 122, 1363-1373.	1.8	75
54	lodine Fortification Plant Screening Process and Accumulation in Tomato Fruits and Potato Tubers. Communications in Soil Science and Plant Analysis, 2011, 42, 706-718.	0.6	59

#	Article	IF	CITATIONS
55	Amplified fragment length polymorphism markers for DNA fingerprinting in the genus Salvia. Plant Biosystems, 2011, 145, 274-277.	0.8	13
56	A genotypic and phenotypic information source for marker-assisted selection of cereals: the CEREALAB database. Database: the Journal of Biological Databases and Curation, 2011, 2011, baq038-baq038.	1.4	14
57	CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theoretical and Applied Genetics, 2010, 121, 21-35.	1.8	151
58	Basal Host Resistance of Barley to Powdery Mildew: Connecting Quantitative Trait Loci and Candidate Genes. Molecular Plant-Microbe Interactions, 2010, 23, 91-102.	1.4	94
59	Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association-mapping population for the Mediterranean basin. Theoretical and Applied Genetics, 2009, 119, 175-187.	1.8	99
60	Markerâ€assisted characterization of frost tolerance in barley (<i>Hordeum vulgare</i> L.). Plant Breeding, 2009, 128, 381-386.	1.0	29
61	QTL alleles from a winter feed type can improve malting quality in barley. Plant Breeding, 2009, 128, 598-605.	1.0	19
62	Gene expression in grapevine cultivars in response to Bois Noir phytoplasma infection. Plant Science, 2009, 176, 792-804.	1.7	94
63	Mapping adaptation of barley to droughted environments. Euphytica, 2008, 161, 35-45.	0.6	44
64	The nuclear–cytoplasmic interaction controls carotenoid content in wheat. Euphytica, 2008, 159, 325-331.	0.6	21
65	Changes in allele frequencies in landraces, old and modern barley cultivars of marker loci close to QTL for grain yield under high and low input conditions. Euphytica, 2008, 163, 435-447.	0.6	32
66	Barley adaptation and improvement in the Mediterranean basin. Plant Breeding, 2008, 127, 554-560.	1.0	40
67	Genetic structure and proposed conservation strategy for natural populations of Calycanthus chinensis Cheng et S.Y. Chang (Calycanthaceae). Canadian Journal of Plant Science, 2008, 88, 179-186.	0.3	2
68	Expression levels of barley <i>Cbf</i> genes at the <i>Frost resistance</i> â€ <i>H2</i> locus are dependent upon alleles at <i>Frâ€H1</i> and <i>Frâ€H2</i> . Plant Journal, 2007, 51, 308-321.	2.8	121
69	Genetic aspects of floral fragrance in plants. Biochemistry (Moscow), 2007, 72, 351-358.	0.7	11
70	Haplotype structure around the nud locus in barley and its association with resistance to leaf stripe (Pyrenophora graminea). Plant Breeding, 2007, 126, 24-29.	1.0	2
71	Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theoretical and Applied Genetics, 2007, 115, 1083-1091.	1.8	145
72	Dual-purpose barley and oat in a Mediterranean environment. Field Crops Research, 2006, 99, 158-166.	2.3	48

#	Article	IF	CITATIONS
73	Genetic variability among different Italian populations of the aphidMyzus persicae. Caryologia, 2006, 59, 326-333.	0.2	2
74	Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theoretical and Applied Genetics, 2006, 112, 445-454.	1.8	128
75	Molecular and Structural Characterization of Barley Vernalization Genes. Plant Molecular Biology, 2005, 59, 449-467.	2.0	258
76	Development of PCR-based markers on chromosome 5H for assisted selection of frost-tolerant genotypes in barley. Molecular Breeding, 2004, 14, 265-273.	1.0	21
77	Two loci on chromosome 5H determine low-temperature tolerance in a †Nure' (winter) × †Tremois' (spring) barley map. Theoretical and Applied Genetics, 2004, 108, 670-680.	1.8	199
78	lsolate-specific QTLs of resistance to leaf stripe (Pyrenophora graminea) in the 'Steptoe' × 'Morex' spring barley cross. Theoretical and Applied Genetics, 2003, 106, 668-675.	1.8	68
79	The PCRâ€Based Marker MWG2018 Linked to the RDG2A Leaf Stripe Resistance Gene Is a Useful Tool for Assessing Barley Resistance in Breeding Programs. Crop Science, 2003, 43, 1036-1042.	0.8	10
80	Genomic regions determining resistance to leaf stripe (Pyrenophora graminea) in barley. Genome, 2002, 45, 460-466.	0.9	24
81	Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Molecular Biology, 2002, 48, 649-665.	2.0	190
82	Identification and mapping of a new leaf stripe resistance gene in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 2001, 102, 1286-1291.	1.8	34
83	Expressed sequence tags from cold-acclimatized barley can identify novel plant genes. Plant Breeding, 2001, 120, 497-502.	1.0	9
84	Phyletic relationships within the genus Hordeum using PCR-based markers. Genetic Resources and Crop Evolution, 2001, 48, 447-458.	0.8	11
85	Genetic diversity in cultivated Osteospermum as revealed by random amplified polymorphic DNA analysis. Plant Breeding, 2000, 119, 351-355.	1.0	7
86	Random amplified polymorphic DNA (RAPD) analysis for the verification of hybridity in interspecific crosses of Alstroemeria. Plant Breeding, 2000, 119, 443-445.	1.0	7
87	Barley—Pyrenophora gramineainteraction: QTL analysis and gene mapping. Plant Breeding, 1999, 118, 29-35.	1.0	28
88	Amplified Fragment Length Polymorphism (AFLP) Markers for Barley Malt Fingerprinting. Journal of Cereal Science, 1999, 29, 257-260.	1.8	14
89	High expression level of a gene coding for a chloroplastic amino acid selective channel protein is correlated to cold acclimation in cereals. Plant Molecular Biology, 1999, 41, 233-243.	2.0	47
90	Uptake and agronomic efficiency of nitrogen in winter barley and winter wheat. European Journal of Agronomy, 1998, 9, 11-20.	1.9	245

#	Article	IF	CITATIONS
91	Cucurbita pepo L. can be transformed by Agrobacterium rhizogenes. Plant Cell, Tissue and Organ Culture, 1997, 51, 89-93.	1.2	10
92	Characterization of ornamental Datura plants transformed by Agrobacterium rhizogenes. In Vitro Cellular and Developmental Biology - Plant, 1997, 33, 101-106.	0.9	30
93	Quantitative resistance to barley leaf stripe (Pyrenophora graminea) is dominated by one major locus. Theoretical and Applied Genetics, 1996, 93-93, 97-101.	1.8	50
94	RFLP analysis of highly polymorphic loci in barley. Theoretical and Applied Genetics, 1993, 85, 926-930.	1.8	9